当前位置: 首页>>代码示例>>Python>>正文


Python optimizers.deserialize方法代码示例

本文整理汇总了Python中keras.optimizers.deserialize方法的典型用法代码示例。如果您正苦于以下问题:Python optimizers.deserialize方法的具体用法?Python optimizers.deserialize怎么用?Python optimizers.deserialize使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在keras.optimizers的用法示例。


在下文中一共展示了optimizers.deserialize方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: prepare_model

# 需要导入模块: from keras import optimizers [as 别名]
# 或者: from keras.optimizers import deserialize [as 别名]
def prepare_model(self):
        """Prepares the model for training."""
        # Set the Keras directory.
        set_keras_base_directory()
        if K.backend() == 'tensorflow':
            # set GPU option allow_growth to False for GPU-enabled tensorflow
            config = tf.ConfigProto()
            config.gpu_options.allow_growth = False
            sess = tf.Session(config=config)
            K.set_session(sess)

        # Deserialize the Keras model.
        self.model = deserialize_keras_model(self.model)
        self.optimizer = deserialize(self.optimizer)
        # Compile the model with the specified loss and optimizer.
        self.model.compile(loss=self.loss, loss_weights = self.loss_weights, 
            optimizer=self.optimizer, metrics=self.metrics) 
开发者ID:cerndb,项目名称:dist-keras,代码行数:19,代码来源:workers.py

示例2: _test_optimizer

# 需要导入模块: from keras import optimizers [as 别名]
# 或者: from keras.optimizers import deserialize [as 别名]
def _test_optimizer(optimizer, target=0.75):
    x_train, y_train = get_test_data()
    model = get_model(x_train.shape[1], 10, y_train.shape[1])
    model.compile(loss='categorical_crossentropy',
                  optimizer=optimizer,
                  metrics=['accuracy'])
    history = model.fit(x_train, y_train, epochs=2, batch_size=16, verbose=0)
    assert history.history['acc'][-1] >= target
    config = optimizers.serialize(optimizer)
    custom_objects = {optimizer.__class__.__name__: optimizer.__class__}
    optim = optimizers.deserialize(config, custom_objects)
    new_config = optimizers.serialize(optim)
    assert config == new_config 
开发者ID:keras-team,项目名称:keras-contrib,代码行数:15,代码来源:optimizers.py

示例3: _test_optimizer

# 需要导入模块: from keras import optimizers [as 别名]
# 或者: from keras.optimizers import deserialize [as 别名]
def _test_optimizer(optimizer, target=0.75):
    x_train, y_train = get_test_data()

    model = Sequential()
    model.add(Dense(10, input_shape=(x_train.shape[1],)))
    model.add(Activation('relu'))
    model.add(Dense(y_train.shape[1]))
    model.add(Activation('softmax'))
    model.compile(loss='categorical_crossentropy',
                  optimizer=optimizer,
                  metrics=['accuracy'])

    history = model.fit(x_train, y_train, epochs=2, batch_size=16, verbose=0)
    assert history.history['acc'][-1] >= target
    config = optimizers.serialize(optimizer)
    optim = optimizers.deserialize(config)
    new_config = optimizers.serialize(optim)
    new_config['class_name'] = new_config['class_name'].lower()
    assert config == new_config

    # Test constraints.
    model = Sequential()
    dense = Dense(10,
                  input_shape=(x_train.shape[1],),
                  kernel_constraint=lambda x: 0. * x + 1.,
                  bias_constraint=lambda x: 0. * x + 2.,)
    model.add(dense)
    model.add(Activation('relu'))
    model.add(Dense(y_train.shape[1]))
    model.add(Activation('softmax'))
    model.compile(loss='categorical_crossentropy',
                  optimizer=optimizer,
                  metrics=['accuracy'])
    model.train_on_batch(x_train[:10], y_train[:10])
    kernel, bias = dense.get_weights()
    assert_allclose(kernel, 1.)
    assert_allclose(bias, 2.) 
开发者ID:hello-sea,项目名称:DeepLearning_Wavelet-LSTM,代码行数:39,代码来源:optimizers_test.py

示例4: _test_optimizer

# 需要导入模块: from keras import optimizers [as 别名]
# 或者: from keras.optimizers import deserialize [as 别名]
def _test_optimizer(optimizer, target=0.75):
    x_train, y_train = get_test_data()

    model = Sequential()
    model.add(Dense(10, input_shape=(x_train.shape[1],)))
    model.add(Activation('relu'))
    model.add(Dense(y_train.shape[1]))
    model.add(Activation('softmax'))
    model.compile(loss='categorical_crossentropy',
                  optimizer=optimizer,
                  metrics=['accuracy'])

    history = model.fit(x_train, y_train, epochs=2, batch_size=16, verbose=0)
    # TODO PlaidML fails this test
    assert history.history['acc'][-1] >= target
    config = k_optimizers.serialize(optimizer)
    optim = k_optimizers.deserialize(config)
    new_config = k_optimizers.serialize(optim)
    new_config['class_name'] = new_config['class_name'].lower()
    assert config == new_config

    # Test constraints.
    model = Sequential()
    dense = Dense(10,
                  input_shape=(x_train.shape[1],),
                  kernel_constraint=lambda x: 0. * x + 1.,
                  bias_constraint=lambda x: 0. * x + 2.,)
    model.add(dense)
    model.add(Activation('relu'))
    model.add(Dense(y_train.shape[1]))
    model.add(Activation('softmax'))
    model.compile(loss='categorical_crossentropy',
                  optimizer=optimizer,
                  metrics=['accuracy'])
    model.train_on_batch(x_train[:10], y_train[:10])
    kernel, bias = dense.get_weights()
    assert_allclose(kernel, 1.)
    assert_allclose(bias, 2.) 
开发者ID:deepfakes,项目名称:faceswap,代码行数:40,代码来源:optimizers_test.py

示例5: clone_optimizer

# 需要导入模块: from keras import optimizers [as 别名]
# 或者: from keras.optimizers import deserialize [as 别名]
def clone_optimizer(optimizer):
    if type(optimizer) is str:
        return optimizers.get(optimizer)
    # Requires Keras 1.0.7 since get_config has breaking changes.
    params = dict([(k, v) for k, v in optimizer.get_config().items()])
    config = {
        'class_name': optimizer.__class__.__name__,
        'config': params,
    }
    if hasattr(optimizers, 'optimizer_from_config'):
        # COMPATIBILITY: Keras < 2.0
        clone = optimizers.optimizer_from_config(config)
    else:
        clone = optimizers.deserialize(config)
    return clone 
开发者ID:keras-rl,项目名称:keras-rl,代码行数:17,代码来源:util.py

示例6: build

# 需要导入模块: from keras import optimizers [as 别名]
# 或者: from keras.optimizers import deserialize [as 别名]
def build(self):
        from keras.optimizers import deserialize
        opt_config = {'class_name': self.name, 'config': self.config}
        opt = deserialize(opt_config)
        if self.horovod_wrapper:
            import horovod.keras as hvd
            if hasattr(opt, 'lr'):
                opt.lr *= hvd.size()
            opt = hvd.DistributedOptimizer(opt)
        return opt 
开发者ID:vlimant,项目名称:mpi_learn,代码行数:12,代码来源:optimizer.py

示例7: from_config

# 需要导入模块: from keras import optimizers [as 别名]
# 或者: from keras.optimizers import deserialize [as 别名]
def from_config(cls, config, custom_objects=None):
        optimizer_config = config.pop('optimizer')
        optimizer = deserialize(optimizer_config)
        return cls(optimizer=optimizer, **config) 
开发者ID:YerevaNN,项目名称:DIIN-in-Keras,代码行数:6,代码来源:l2optimizer.py


注:本文中的keras.optimizers.deserialize方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。