本文整理汇总了Python中keras.optimizers.Adagrad方法的典型用法代码示例。如果您正苦于以下问题:Python optimizers.Adagrad方法的具体用法?Python optimizers.Adagrad怎么用?Python optimizers.Adagrad使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类keras.optimizers
的用法示例。
在下文中一共展示了optimizers.Adagrad方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: fit
# 需要导入模块: from keras import optimizers [as 别名]
# 或者: from keras.optimizers import Adagrad [as 别名]
def fit(self, train_X, val_X, nb_epoch=50, batch_size=100, feature_weights=None):
print 'Training autoencoder'
optimizer = Adadelta(lr=1.5)
# optimizer = Adam()
# optimizer = Adagrad()
if feature_weights is None:
self.autoencoder.compile(optimizer=optimizer, loss='binary_crossentropy') # kld, binary_crossentropy, mse
else:
print 'Using weighted loss'
self.autoencoder.compile(optimizer=optimizer, loss=weighted_binary_crossentropy(feature_weights)) # kld, binary_crossentropy, mse
self.autoencoder.fit(train_X[0], train_X[1],
nb_epoch=nb_epoch,
batch_size=batch_size,
shuffle=True,
validation_data=(val_X[0], val_X[1]),
callbacks=[
ReduceLROnPlateau(monitor='val_loss', factor=0.2, patience=3, min_lr=0.01),
EarlyStopping(monitor='val_loss', min_delta=1e-5, patience=5, verbose=1, mode='auto'),
# ModelCheckpoint(self.model_save_path, monitor='val_loss', save_best_only=True, verbose=0),
]
)
return self
示例2: get_optimizer
# 需要导入模块: from keras import optimizers [as 别名]
# 或者: from keras.optimizers import Adagrad [as 别名]
def get_optimizer(args):
clipvalue = 0
clipnorm = 10
if args.algorithm == 'rmsprop':
optimizer = opt.RMSprop(lr=0.001, rho=0.9, epsilon=1e-06, clipnorm=clipnorm, clipvalue=clipvalue)
elif args.algorithm == 'sgd':
optimizer = opt.SGD(lr=0.01, momentum=0.0, decay=0.0, nesterov=False, clipnorm=clipnorm, clipvalue=clipvalue)
elif args.algorithm == 'adagrad':
optimizer = opt.Adagrad(lr=0.01, epsilon=1e-06, clipnorm=clipnorm, clipvalue=clipvalue)
elif args.algorithm == 'adadelta':
optimizer = opt.Adadelta(lr=1.0, rho=0.95, epsilon=1e-06, clipnorm=clipnorm, clipvalue=clipvalue)
elif args.algorithm == 'adam':
optimizer = opt.Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-08, clipnorm=clipnorm, clipvalue=clipvalue)
elif args.algorithm == 'adamax':
optimizer = opt.Adamax(lr=0.002, beta_1=0.9, beta_2=0.999, epsilon=1e-08, clipnorm=clipnorm, clipvalue=clipvalue)
return optimizer
示例3: get_optimizer
# 需要导入模块: from keras import optimizers [as 别名]
# 或者: from keras.optimizers import Adagrad [as 别名]
def get_optimizer(config):
if config.OPTIMIZER == 'SGD':
return SGD(lr=config.LEARNING_RATE, momentum=config.LEARNING_MOMENTUM, clipnorm=config.GRADIENT_CLIP_NORM, nesterov=config.NESTEROV)
elif config.OPTIMIZER == 'RMSprop':
return RMSprop(lr=config.LEARNING_RATE, clipnorm=config.GRADIENT_CLIP_NORM)
elif config.OPTIMIZER == 'Adagrad':
return Adagrad(lr=config.LEARNING_RATE, clipnorm=config.GRADIENT_CLIP_NORM)
elif config.OPTIMIZER == 'Adadelta':
return Adadelta(lr=config.LEARNING_RATE, clipnorm=config.GRADIENT_CLIP_NORM)
elif config.OPTIMIZER == 'Adam':
return Adam(lr=config.LEARNING_RATE, clipnorm=config.GRADIENT_CLIP_NORM, amsgrad=config.AMSGRAD)
elif config.OPTIMIZER == 'Adamax':
return Adamax(lr=config.LEARNING_RATE, clipnorm=config.GRADIENT_CLIP_NORM)
elif config.OPTIMIZER == 'Nadam':
return Nadam(lr=config.LEARNING_RATE, clipnorm=config.GRADIENT_CLIP_NORM)
else:
raise Exception('Unrecognized optimizer: {}'.format(config.OPTIMIZER))
示例4: get_optimizer
# 需要导入模块: from keras import optimizers [as 别名]
# 或者: from keras.optimizers import Adagrad [as 别名]
def get_optimizer(name='Adadelta'):
if name == 'SGD':
return optimizers.SGD(clipnorm=1.)
if name == 'RMSprop':
return optimizers.RMSprop(clipnorm=1.)
if name == 'Adagrad':
return optimizers.Adagrad(clipnorm=1.)
if name == 'Adadelta':
return optimizers.Adadelta(clipnorm=1.)
if name == 'Adam':
return optimizers.Adam(clipnorm=1.)
if name == 'Adamax':
return optimizers.Adamax(clipnorm=1.)
if name == 'Nadam':
return optimizers.Nadam(clipnorm=1.)
return optimizers.Adam(clipnorm=1.)
示例5: get_optimizer
# 需要导入模块: from keras import optimizers [as 别名]
# 或者: from keras.optimizers import Adagrad [as 别名]
def get_optimizer(args):
clipvalue = 0
clipnorm = 10
if args.algorithm == 'rmsprop':
optimizer = opt.RMSprop(lr=0.0001, rho=0.9, epsilon=1e-06, clipnorm=clipnorm, clipvalue=clipvalue)
elif args.algorithm == 'sgd':
optimizer = opt.SGD(lr=0.01, momentum=0.0, decay=0.0, nesterov=False, clipnorm=clipnorm, clipvalue=clipvalue)
elif args.algorithm == 'adagrad':
optimizer = opt.Adagrad(lr=0.01, epsilon=1e-06, clipnorm=clipnorm, clipvalue=clipvalue)
elif args.algorithm == 'adadelta':
optimizer = opt.Adadelta(lr=1.0, rho=0.95, epsilon=1e-06, clipnorm=clipnorm, clipvalue=clipvalue)
elif args.algorithm == 'adam':
optimizer = opt.Adam(lr=0.0001, beta_1=0.9, beta_2=0.999, epsilon=1e-08, clipnorm=clipnorm, clipvalue=clipvalue)
elif args.algorithm == 'adamax':
optimizer = opt.Adamax(lr=0.002, beta_1=0.9, beta_2=0.999, epsilon=1e-08, clipnorm=clipnorm, clipvalue=clipvalue)
return optimizer
示例6: optimizors
# 需要导入模块: from keras import optimizers [as 别名]
# 或者: from keras.optimizers import Adagrad [as 别名]
def optimizors(random_optimizor):
if random_optimizor:
i = random.randint(1,3)
if i==0:
opt = optimizers.SGD()
elif i==1:
opt= optimizers.RMSprop()
elif i==2:
opt= optimizers.Adagrad()
elif i==3:
opt = optimizers.Adam()
elif i==4:
opt =optimizers.Nadam()
print(opt)
else:
opt= optimizers.Adam()
return opt
示例7: get_optimizer
# 需要导入模块: from keras import optimizers [as 别名]
# 或者: from keras.optimizers import Adagrad [as 别名]
def get_optimizer(args):
clipvalue = 0
clipnorm = 10
if args.algorithm == 'rmsprop':
optimizer = opt.RMSprop(lr=0.0005, rho=0.9, epsilon=1e-06, clipnorm=clipnorm, clipvalue=clipvalue)
elif args.algorithm == 'sgd':
optimizer = opt.SGD(lr=0.01, momentum=0.0, decay=0.0, nesterov=False, clipnorm=clipnorm, clipvalue=clipvalue)
elif args.algorithm == 'adagrad':
optimizer = opt.Adagrad(lr=0.01, epsilon=1e-06, clipnorm=clipnorm, clipvalue=clipvalue)
elif args.algorithm == 'adadelta':
optimizer = opt.Adadelta(lr=1.0, rho=0.95, epsilon=1e-06, clipnorm=clipnorm, clipvalue=clipvalue)
elif args.algorithm == 'adam':
optimizer = opt.Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-08, clipnorm=clipnorm, clipvalue=clipvalue)
elif args.algorithm == 'adamax':
optimizer = opt.Adamax(lr=0.002, beta_1=0.9, beta_2=0.999, epsilon=1e-08, clipnorm=clipnorm, clipvalue=clipvalue)
return optimizer
示例8: get_learning_rate
# 需要导入模块: from keras import optimizers [as 别名]
# 或者: from keras.optimizers import Adagrad [as 别名]
def get_learning_rate(self):
if hasattr(self.model, 'optimizer'):
config = self.model.optimizer.get_config()
from keras.optimizers import Adadelta, Adam, Adamax, Adagrad, RMSprop, SGD
if isinstance(self.model.optimizer, Adadelta) or isinstance(self.model.optimizer, Adam) \
or isinstance(self.model.optimizer, Adamax) or isinstance(self.model.optimizer, Adagrad)\
or isinstance(self.model.optimizer, RMSprop) or isinstance(self.model.optimizer, SGD):
return config['lr'] * (1. / (1. + config['decay'] * float(K.get_value(self.model.optimizer.iterations))))
elif 'lr' in config:
return config['lr']
示例9: create_model
# 需要导入模块: from keras import optimizers [as 别名]
# 或者: from keras.optimizers import Adagrad [as 别名]
def create_model(input_shape, optimizer='Adagrad', learn_rate=None, decay=0.0, momentum=0.0, activation='relu', dropout_rate=0.5):
logging.debug('input_shape {}'.format(input_shape))
logging.debug('input_shape {}'.format(type(input_shape)))
# input_shape = (7, 7, 512)
# Optimizer
optimizer, learn_rate = get_optimizer(optimizer, learn_rate, decay, momentum)
# Model
model = Sequential()
model.add(Flatten(input_shape=input_shape))
model.add(Dense(256, activation=activation))
model.add(Dropout(dropout_rate))
model.add(Dense(len(class_names), activation='softmax')) # Binary to Multi classification changes
# model.add(Dense(1, activation='sigmoid'))
logging.debug('model summary {}'.format(model.summary()))
# Compile
model.compile(optimizer=optimizer,
loss='sparse_categorical_crossentropy', metrics=['accuracy']) # Binary to Multi classification changes
logging.info('optimizer:{} learn_rate:{} decay:{} momentum:{} activation:{} dropout_rate:{}'.format(
optimizer, learn_rate, decay, momentum, activation, dropout_rate))
return model
示例10: test_adagrad
# 需要导入模块: from keras import optimizers [as 别名]
# 或者: from keras.optimizers import Adagrad [as 别名]
def test_adagrad(self):
print('test Adagrad')
self.assertTrue(_test_optimizer(Adagrad()))
示例11: buildnetwork
# 需要导入模块: from keras import optimizers [as 别名]
# 或者: from keras.optimizers import Adagrad [as 别名]
def buildnetwork(self):
model = Sequential()
model.add(lstm(20, dropout_W=0.2, input_shape = (self.seq_len, self.n_feature)))
#model.add(LSTM(20, dropout=0.2, input_shape=(int(self.seq_len), int(self.n_feature))))
model.add(Dense(1, activation=None))
model.compile(loss='mean_squared_error', optimizer=Adagrad(lr=0.002,clipvalue=10), metrics=['mean_squared_error'])
return model
示例12: test_adagrad
# 需要导入模块: from keras import optimizers [as 别名]
# 或者: from keras.optimizers import Adagrad [as 别名]
def test_adagrad():
_test_optimizer(optimizers.Adagrad())
_test_optimizer(optimizers.Adagrad(decay=1e-3))
示例13: lr_normalizer
# 需要导入模块: from keras import optimizers [as 别名]
# 或者: from keras.optimizers import Adagrad [as 别名]
def lr_normalizer(lr, optimizer):
"""Assuming a default learning rate 1, rescales the learning rate
such that learning rates amongst different optimizers are more or less
equivalent.
Parameters
----------
lr : float
The learning rate.
optimizer : keras optimizer
The optimizer. For example, Adagrad, Adam, RMSprop.
"""
from keras.optimizers import SGD, Adam, Adadelta, Adagrad, Adamax, RMSprop
from keras.optimizers import Nadam
from talos.utils.exceptions import TalosModelError
if optimizer == Adadelta:
pass
elif optimizer == SGD or optimizer == Adagrad:
lr /= 100.0
elif optimizer == Adam or optimizer == RMSprop:
lr /= 1000.0
elif optimizer == Adamax or optimizer == Nadam:
lr /= 500.0
else:
raise TalosModelError(str(optimizer) + " is not supported by lr_normalizer")
return lr
示例14: compile_model
# 需要导入模块: from keras import optimizers [as 别名]
# 或者: from keras.optimizers import Adagrad [as 别名]
def compile_model(self, loss_name, opt=None):
print "loss function: ", loss_name
print "optimizer: ", opt.optimizer
print "learning_rate: ", opt.lr
if loss_name == 'mse':
loss = loss_name
clipnorm = opt.clipnorm
optimizer = opt.optimizer
learning_rate = opt.lr
if optimizer == 'sgd':
# let's train the model using SGD + momentum (how original).
if clipnorm > 0:
sgd = SGD(lr=learning_rate, clipnorm=clipnorm, decay=1e-6, momentum=0.9, nesterov=True)
else:
sgd = SGD(lr=learning_rate, decay=1e-6, momentum=0.9, nesterov=True)
self.model.compile(loss=loss, optimizer=sgd)
elif optimizer == 'rmsprop':
if clipnorm > 0:
rmsprop = RMSprop(lr=learning_rate, clipnorm=clipnorm, rho=0.9, epsilon=1e-6)
else:
rmsprop = RMSprop(lr=learning_rate, rho=0.9, epsilon=1e-6)
self.model.compile(loss=loss, optimizer=rmsprop)
elif optimizer == 'adagrad':
if clipnorm > 0:
adagrad = Adagrad(lr=learning_rate, clipnorm=clipnorm, epsilon=1e-06)
else:
adagrad = Adagrad(lr=learning_rate, epsilon=1e-06)
self.model.compile(loss=loss, optimizer=adagrad)
elif optimizer == 'adma':
if clipnorm > 0:
adma = Adam(lr=learning_rate, clipnorm=clipnorm, beta_1=0.9, beta_2=0.999, epsilon=1e-08)
else:
adma = Adam(lr=learning_rate, beta_1=0.9, beta_2=0.999, epsilon=1e-08)
self.model.compile(loss=loss, optimizer=adma)
示例15: set_learner
# 需要导入模块: from keras import optimizers [as 别名]
# 或者: from keras.optimizers import Adagrad [as 别名]
def set_learner(model, learning_rate, learner):
if learner.lower() == "adagrad":
model.compile(optimizer=Adagrad(lr=learning_rate), loss='binary_crossentropy')
elif learner.lower() == "rmsprop":
model.compile(optimizer=RMSprop(lr=learning_rate), loss='binary_crossentropy')
elif learner.lower() == "adam":
model.compile(optimizer=Adam(lr=learning_rate), loss='binary_crossentropy')
else:
model.compile(optimizer=SGD(lr=learning_rate), loss='binary_crossentropy')
return model