本文整理汇总了Python中keras.models.clone_model方法的典型用法代码示例。如果您正苦于以下问题:Python models.clone_model方法的具体用法?Python models.clone_model怎么用?Python models.clone_model使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类keras.models
的用法示例。
在下文中一共展示了models.clone_model方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: load_model
# 需要导入模块: from keras import models [as 别名]
# 或者: from keras.models import clone_model [as 别名]
def load_model(filename=None, model=None, weights_file=None, custom_objects={}):
"""Loads model architecture from JSON and instantiates the model.
filename: path to JSON file specifying model architecture
model: (or) a Keras model to be cloned
weights_file: path to HDF5 file containing model weights
custom_objects: A Dictionary of custom classes used in the model keyed by name"""
import_keras()
from keras.models import model_from_json, clone_model
if filename is not None:
with open( filename ) as arch_f:
json_str = arch_f.readline()
new_model = model_from_json( json_str, custom_objects=custom_objects)
if model is not None:
new_model = clone_model(model)
if weights_file is not None:
new_model.load_weights( weights_file )
return new_model
示例2: clone_model
# 需要导入模块: from keras import models [as 别名]
# 或者: from keras.models import clone_model [as 别名]
def clone_model(self):
model_copy = clone_model(self.model)
model_copy.set_weights(self.model.get_weights())
return model_copy
示例3: fit
# 需要导入模块: from keras import models [as 别名]
# 或者: from keras.models import clone_model [as 别名]
def fit(self,
latent_dim = 128,
reg_latent = 0,
layers = [512, 256, 128, 64],
reg_layes = [0 ,0, 0, 0],
learning_rate = 0.001,
epochs = 30,
batch_size = 256,
num_negatives = 4,
**earlystopping_kwargs):
self.latent_dim = latent_dim
self.reg_latent = reg_latent
self.layers = layers
self.reg_layes = reg_layes
self.learning_rate = learning_rate
self.epochs = epochs
self.batch_size = batch_size
self.num_negatives = num_negatives
self._init_model()
self._best_model = clone_model(self.model)
self._best_model.set_weights(self.model.get_weights())
self._train_with_early_stopping(epochs,
algorithm_name = self.RECOMMENDER_NAME,
**earlystopping_kwargs)
print("MCRec_RecommenderWrapper: Tranining complete")
self.model = clone_model(self._best_model)
self.model.set_weights(self._best_model.get_weights())
示例4: _update_best_model
# 需要导入模块: from keras import models [as 别名]
# 或者: from keras.models import clone_model [as 别名]
def _update_best_model(self):
# Keras only clones the structure of the model, not the weights
self._best_model = clone_model(self.model)
self._best_model.set_weights(self.model.get_weights())
示例5: deep_clone_model
# 需要导入模块: from keras import models [as 别名]
# 或者: from keras.models import clone_model [as 别名]
def deep_clone_model(source_model):
destination_model = clone_model(source_model)
destination_model.set_weights(source_model.get_weights())
return destination_model
示例6: get_model
# 需要导入模块: from keras import models [as 别名]
# 或者: from keras.models import clone_model [as 别名]
def get_model(self):
model = clone_model(self.model_copy)
model.load_weights('./weights/sigma_estimation_model.hdf5')
adam=Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-08, decay=0)
model.compile(loss=fine_tuning_loss, optimizer=adam)
return model
示例7: __init__
# 需要导入模块: from keras import models [as 别名]
# 或者: from keras.models import clone_model [as 别名]
def __init__(self,
input_dim,
quantiles,
depth=3,
width=128,
activation="relu",
ensemble_size=1,
**kwargs):
"""
Create a QRNN model.
Arguments:
input_dim(int): The dimension of the measurement space, i.e. the number
of elements in a single measurement vector y
quantiles(np.array): 1D-array containing the quantiles to estimate of
the posterior distribution. Given as fractions
within the range [0, 1].
depth(int): The number of hidden layers in the neural network to
use for the regression. Default is 3, i.e. three hidden
plus input and output layer.
width(int): The number of neurons in each hidden layer.
activation(str): The name of the activation functions to use. Default
is "relu", for rectified linear unit. See
`this <https://keras.io/activations>`_ link for
available functions.
**kwargs: Additional keyword arguments are passed to the constructor
call `keras.layers.Dense` of the hidden layers, which can
for example be used to add regularization. For more info consult
`Keras documentation. <https://keras.io/layers/core/#dense>`_
"""
self.input_dim = input_dim
self.quantiles = np.array(quantiles)
self.depth = depth
self.width = width
self.activation = activation
model = Sequential()
if depth == 0:
model.add(Dense(input_dim=input_dim,
units=len(quantiles),
activation=None))
else:
model.add(Dense(input_dim=input_dim,
units=width,
activation=activation))
for i in range(depth - 2):
model.add(Dense(units=width,
activation=activation,
**kwargs))
model.add(Dense(units=len(quantiles), activation=None))
self.models = [clone_model(model) for i in range(ensemble_size)]