本文整理汇总了Python中keras.models.Sequential.from_config方法的典型用法代码示例。如果您正苦于以下问题:Python Sequential.from_config方法的具体用法?Python Sequential.from_config怎么用?Python Sequential.from_config使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类keras.models.Sequential
的用法示例。
在下文中一共展示了Sequential.from_config方法的10个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _load_model_config
# 需要导入模块: from keras.models import Sequential [as 别名]
# 或者: from keras.models.Sequential import from_config [as 别名]
def _load_model_config(model_cfg, model_weights):
if type(model_cfg) == str:
if not os.path.exists(model_cfg):
try:
class_ = getattr(applications, model_cfg)
return class_(weights=model_weights)
except AttributeError:
available_mdls = [attr for attr in dir(applications) if callable(getattr(applications, attr))]
raise ValueError('Could not load pretrained model with key {}. '
'Available models: {}'.format(model_cfg, ', '.join(available_mdls)))
with open(model_cfg, 'r') as fileh:
try:
return model_from_json(fileh)
except ValueError:
pass
try:
return model_from_yaml(fileh)
except ValueError:
pass
raise ValueError('Could not load model from configuration file {}. '
'Make sure the path is correct and the file format is yaml or json.'.format(model_cfg))
elif type(model_cfg) == dict:
return Model.from_config(model_cfg)
elif type(model_cfg) == list:
return Sequential.from_config(model_cfg)
raise ValueError('Could not load model from configuration object of type {}.'.format(type(model_cfg)))
示例2: build_model_from_file
# 需要导入模块: from keras.models import Sequential [as 别名]
# 或者: from keras.models.Sequential import from_config [as 别名]
def build_model_from_file(model_file):
structure, weights = pickle.load(open(model_file, 'rb'))
model = Sequential.from_config(structure)
model.set_weights(weights)
return model
示例3: build_inference_model
# 需要导入模块: from keras.models import Sequential [as 别名]
# 或者: from keras.models.Sequential import from_config [as 别名]
def build_inference_model(model, batch_size=1, seq_len=1):
"""
build inference model from model config
input shape modified to (1, 1)
"""
logger.info("building inference model.")
config = model.get_config()
# edit batch_size and seq_len
config[0]["config"]["batch_input_shape"] = (batch_size, seq_len)
inference_model = Sequential.from_config(config)
inference_model.trainable = False
return inference_model
示例4: __init__
# 需要导入模块: from keras.models import Sequential [as 别名]
# 或者: from keras.models.Sequential import from_config [as 别名]
def __init__(self, S, A, learning_rate=1e-3, gamma=0.9, policy=epsilon_greedy, batch_size=32, update_freq=1000, memory_size=100):
self.S = S
self.A = A
self.learning_rate = learning_rate
self.gamma = gamma
self.policy = policy
self.update_freq = update_freq
self.batch_size = batch_size
self.input_dim = self.get_space_dim(S)
self.output_dim = self.get_space_dim(A)
################################
# Build Model and Target Model #
################################
model = Sequential()
model.add(Dense(10, input_dim=self.input_dim, name='layer1'))
model.add(Activation('relu'))
model.add(Dense(self.output_dim, name='layer2'))
model.compile(loss='mse', optimizer=sgd(lr=self.learning_rate))
self.model = model
self.target_model = Sequential.from_config(self.model.get_config())
self.target_model.set_weights(self.model.get_weights())
# Build Replay Memory #
self.replay_memory = ReplayMemory(memory_size, self.input_dim)
self.state = np.zeros(self.input_dim)
self.action = 0
self.time = 0
self.episode = 0
示例5: test_nested_sequential
# 需要导入模块: from keras.models import Sequential [as 别名]
# 或者: from keras.models.Sequential import from_config [as 别名]
def test_nested_sequential():
(X_train, y_train), (X_test, y_test) = _get_test_data()
inner = Sequential()
inner.add(Dense(nb_hidden, input_shape=(input_dim,)))
inner.add(Activation('relu'))
inner.add(Dense(nb_class))
middle = Sequential()
middle.add(inner)
model = Sequential()
model.add(middle)
model.add(Activation('softmax'))
model.compile(loss='categorical_crossentropy', optimizer='rmsprop')
model.fit(X_train, y_train, batch_size=batch_size, nb_epoch=nb_epoch, verbose=1, validation_data=(X_test, y_test))
model.fit(X_train, y_train, batch_size=batch_size, nb_epoch=nb_epoch, verbose=2, validation_split=0.1)
model.fit(X_train, y_train, batch_size=batch_size, nb_epoch=nb_epoch, verbose=0)
model.fit(X_train, y_train, batch_size=batch_size, nb_epoch=nb_epoch, verbose=1, shuffle=False)
model.train_on_batch(X_train[:32], y_train[:32])
loss = model.evaluate(X_test, y_test, verbose=0)
model.predict(X_test, verbose=0)
model.predict_classes(X_test, verbose=0)
model.predict_proba(X_test, verbose=0)
fname = 'test_nested_sequential_temp.h5'
model.save_weights(fname, overwrite=True)
inner = Sequential()
inner.add(Dense(nb_hidden, input_shape=(input_dim,)))
inner.add(Activation('relu'))
inner.add(Dense(nb_class))
middle = Sequential()
middle.add(inner)
model = Sequential()
model.add(middle)
model.add(Activation('softmax'))
model.compile(loss='categorical_crossentropy', optimizer='rmsprop')
model.load_weights(fname)
os.remove(fname)
nloss = model.evaluate(X_test, y_test, verbose=0)
assert(loss == nloss)
# test serialization
config = model.get_config()
Sequential.from_config(config)
model.summary()
json_str = model.to_json()
model_from_json(json_str)
yaml_str = model.to_yaml()
model_from_yaml(yaml_str)
示例6: test_merge_sum
# 需要导入模块: from keras.models import Sequential [as 别名]
# 或者: from keras.models.Sequential import from_config [as 别名]
def test_merge_sum():
(X_train, y_train), (X_test, y_test) = _get_test_data()
left = Sequential()
left.add(Dense(nb_hidden, input_shape=(input_dim,)))
left.add(Activation('relu'))
right = Sequential()
right.add(Dense(nb_hidden, input_shape=(input_dim,)))
right.add(Activation('relu'))
model = Sequential()
model.add(Merge([left, right], mode='sum'))
model.add(Dense(nb_class))
model.add(Activation('softmax'))
model.compile(loss='categorical_crossentropy', optimizer='rmsprop')
model.fit([X_train, X_train], y_train, batch_size=batch_size, nb_epoch=nb_epoch, verbose=0, validation_data=([X_test, X_test], y_test))
model.fit([X_train, X_train], y_train, batch_size=batch_size, nb_epoch=nb_epoch, verbose=0, validation_split=0.1)
model.fit([X_train, X_train], y_train, batch_size=batch_size, nb_epoch=nb_epoch, verbose=0)
model.fit([X_train, X_train], y_train, batch_size=batch_size, nb_epoch=nb_epoch, verbose=0, shuffle=False)
loss = model.evaluate([X_test, X_test], y_test, verbose=0)
model.predict([X_test, X_test], verbose=0)
model.predict_classes([X_test, X_test], verbose=0)
model.predict_proba([X_test, X_test], verbose=0)
# test weight saving
fname = 'test_merge_sum_temp.h5'
model.save_weights(fname, overwrite=True)
left = Sequential()
left.add(Dense(nb_hidden, input_shape=(input_dim,)))
left.add(Activation('relu'))
right = Sequential()
right.add(Dense(nb_hidden, input_shape=(input_dim,)))
right.add(Activation('relu'))
model = Sequential()
model.add(Merge([left, right], mode='sum'))
model.add(Dense(nb_class))
model.add(Activation('softmax'))
model.load_weights(fname)
os.remove(fname)
model.compile(loss='categorical_crossentropy', optimizer='rmsprop')
nloss = model.evaluate([X_test, X_test], y_test, verbose=0)
assert(loss == nloss)
# test serialization
config = model.get_config()
Sequential.from_config(config)
model.summary()
json_str = model.to_json()
model_from_json(json_str)
yaml_str = model.to_yaml()
model_from_yaml(yaml_str)
示例7: test_merge_recursivity
# 需要导入模块: from keras.models import Sequential [as 别名]
# 或者: from keras.models.Sequential import from_config [as 别名]
def test_merge_recursivity():
(X_train, y_train), (X_test, y_test) = _get_test_data()
left = Sequential()
left.add(Dense(nb_hidden, input_shape=(input_dim,)))
left.add(Activation('relu'))
right = Sequential()
right.add(Dense(nb_hidden, input_shape=(input_dim,)))
right.add(Activation('relu'))
righter = Sequential()
righter.add(Dense(nb_hidden, input_shape=(input_dim,)))
righter.add(Activation('relu'))
intermediate = Sequential()
intermediate.add(Merge([left, right], mode='sum'))
intermediate.add(Dense(nb_hidden))
intermediate.add(Activation('relu'))
model = Sequential()
model.add(Merge([intermediate, righter], mode='sum'))
model.add(Dense(nb_class))
model.add(Activation('softmax'))
model.compile(loss='categorical_crossentropy', optimizer='rmsprop')
model.fit([X_train, X_train, X_train], y_train, batch_size=batch_size, nb_epoch=nb_epoch, verbose=0, validation_data=([X_test, X_test, X_test], y_test))
model.fit([X_train, X_train, X_train], y_train, batch_size=batch_size, nb_epoch=nb_epoch, verbose=0, validation_split=0.1)
model.fit([X_train, X_train, X_train], y_train, batch_size=batch_size, nb_epoch=nb_epoch, verbose=0)
model.fit([X_train, X_train, X_train], y_train, batch_size=batch_size, nb_epoch=nb_epoch, verbose=0, shuffle=False)
loss = model.evaluate([X_test, X_test, X_test], y_test, verbose=0)
model.predict([X_test, X_test, X_test], verbose=0)
model.predict_classes([X_test, X_test, X_test], verbose=0)
model.predict_proba([X_test, X_test, X_test], verbose=0)
fname = 'test_merge_recursivity_temp.h5'
model.save_weights(fname, overwrite=True)
model.load_weights(fname)
os.remove(fname)
nloss = model.evaluate([X_test, X_test, X_test], y_test, verbose=0)
assert(loss == nloss)
# test serialization
config = model.get_config()
Sequential.from_config(config)
model.summary()
json_str = model.to_json()
model_from_json(json_str)
yaml_str = model.to_yaml()
model_from_yaml(yaml_str)
示例8: test_merge_overlap
# 需要导入模块: from keras.models import Sequential [as 别名]
# 或者: from keras.models.Sequential import from_config [as 别名]
def test_merge_overlap():
(X_train, y_train), (X_test, y_test) = _get_test_data()
left = Sequential()
left.add(Dense(nb_hidden, input_shape=(input_dim,)))
left.add(Activation('relu'))
model = Sequential()
model.add(Merge([left, left], mode='sum'))
model.add(Dense(nb_class))
model.add(Activation('softmax'))
model.compile(loss='categorical_crossentropy', optimizer='rmsprop')
model.fit(X_train, y_train, batch_size=batch_size, nb_epoch=nb_epoch, verbose=1, validation_data=(X_test, y_test))
model.fit(X_train, y_train, batch_size=batch_size, nb_epoch=nb_epoch, verbose=2, validation_split=0.1)
model.fit(X_train, y_train, batch_size=batch_size, nb_epoch=nb_epoch, verbose=0)
model.fit(X_train, y_train, batch_size=batch_size, nb_epoch=nb_epoch, verbose=1, shuffle=False)
model.train_on_batch(X_train[:32], y_train[:32])
loss = model.evaluate(X_test, y_test, verbose=0)
model.predict(X_test, verbose=0)
model.predict_classes(X_test, verbose=0)
model.predict_proba(X_test, verbose=0)
fname = 'test_merge_overlap_temp.h5'
print(model.layers)
model.save_weights(fname, overwrite=True)
print(model.trainable_weights)
model.load_weights(fname)
os.remove(fname)
nloss = model.evaluate(X_test, y_test, verbose=0)
assert(loss == nloss)
# test serialization
config = model.get_config()
Sequential.from_config(config)
model.summary()
json_str = model.to_json()
model_from_json(json_str)
yaml_str = model.to_yaml()
model_from_yaml(yaml_str)
示例9: get_agent
# 需要导入模块: from keras.models import Sequential [as 别名]
# 或者: from keras.models.Sequential import from_config [as 别名]
def get_agent(env, name=None):
S = env.observation_space
A = env.action_space
memory_size = 50000
random_start = 500
exploration_frames = 10000
epsilon = 0.01
gamma = 0.99
target_update_freq = 1000
update_freq = 1
history_len = 1
batch_size = 32
loss = huber_loss
#opt = RMSprop(lr=0.00025)
opt = 'adam'
bounds = False
double = False
update_cycles = None
name = 'sDQN' if name == None else name
image = False
# define the model
model = Sequential()
if type(S) == gym.spaces.Discrete:
input_dim = history_len*S.n
model.add(Dense(50, input_dim=input_dim, activation='relu', name='l1'))
else:
input_shape = [dim for dim in S.shape]
input_shape[-1] *= history_len
model.add(Dense(50, input_shape=input_shape, activation='relu', name='l1'))
model.add(Dense(100, activation='relu', name='l2'))
model.add(Dense(50, activation='relu', name='l3'))
model.add(Dense(A.n, activation='linear', name='l4'))
config = model.get_config()
model2 = Sequential.from_config(config)
model2.set_weights(model.get_weights())
Q = KerasQ(S, A, model=model, loss=loss, optimizer=opt, bounds=bounds, batch_size=batch_size)
targetQ = KerasQ(S, A, model=model2, loss=loss, optimizer=opt, bounds=bounds, batch_size=batch_size)
policy = MaxQ(Q, randomness=SAepsilon_greedy(A, epsilon=epsilon, final=exploration_frames))
agent = DQN(S, A, gamma=gamma, policy=policy, Qfunction=Q, targetQfunction=targetQ, memory_size=memory_size, random_start=random_start,
batch_size=batch_size, target_update_freq=target_update_freq, update_freq=update_freq, history_len=history_len,
image=image, name=name, double=double, bounds=bounds, update_cycles=update_cycles)
return agent
示例10: get_agent
# 需要导入模块: from keras.models import Sequential [as 别名]
# 或者: from keras.models.Sequential import from_config [as 别名]
def get_agent(env, name=None):
S = env.observation_space
A = env.action_space
memory_size = 1000000
random_start = 50000
exploration_frames = 1000000
epsilon = 0.1
gamma = 0.99
target_update_freq = 10000
update_freq = 1 # update every 4 steps or 4 frames?
history_len = 4
batch_size = 32
loss = huber_loss
opt = RMSprop(lr=0.00025)
bounds = False
double = False
update_cycles = None
name = 'atariDQN' if name == None else name
image = True
# define the model
if K.image_dim_ordering() == 'th':
state_shape = (4,84,84)
else:
state_shape = (84,84,4)
model = Sequential()
model.add(Convolution2D(32, 8, 8, subsample=(4,4), input_shape=state_shape, activation='relu', init='he_uniform'))
model.add(Convolution2D(64, 4, 4, subsample=(2,2), activation='relu', init='he_uniform'))
model.add(Convolution2D(64, 3, 3, subsample=(1,1), activation='relu', init='he_uniform'))
model.add(Flatten())
model.add(Dense(512, activation='relu', init='he_uniform'))
model.add(Dense(A.n, init='he_uniform'))
config = model.get_config()
model2 = Sequential.from_config(config)
model2.set_weights(model.get_weights())
Q = KerasQ(S, A, model=model, loss=loss, optimizer=opt, bounds=bounds, batch_size=batch_size)
targetQ = KerasQ(S, A, model=model2, loss=loss, optimizer=opt, bounds=bounds, batch_size=batch_size)
policy = MaxQ(Q, randomness=SAepsilon_greedy(A, epsilon=epsilon, final=exploration_frames))
agent = DQN(S, A, gamma=gamma, policy=policy, Qfunction=Q, targetQfunction=targetQ, memory_size=memory_size, random_start=random_start,
batch_size=batch_size, target_update_freq=target_update_freq, update_freq=update_freq, history_len=history_len,
image=image, name=name, double=double, bounds=bounds, update_cycles=update_cycles)
return agent