当前位置: 首页>>代码示例>>Python>>正文


Python models.Model方法代码示例

本文整理汇总了Python中keras.models.Model方法的典型用法代码示例。如果您正苦于以下问题:Python models.Model方法的具体用法?Python models.Model怎么用?Python models.Model使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在keras.models的用法示例。


在下文中一共展示了models.Model方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: _save

# 需要导入模块: from keras import models [as 别名]
# 或者: from keras.models import Model [as 别名]
def _save(model, base_model, layers, labels, random_seed, checkpoints_dir):
    from keras.layers import Flatten, Dense
    from keras import Model
    nclasses = len(labels)
    x = Flatten()(base_model.output)
    x = _makenet(x, layers, dropout=None, random_seed=random_seed)
    predictions = Dense(nclasses, activation="softmax", name="predictions")(x)
    model_final = Model(inputs=base_model.input, outputs=predictions)

    for i in range(layers - 1):
        weights = model.get_layer(name='dense_layer_{}'.format(i)).get_weights()
        model_final.get_layer(name='dense_layer_{}'.format(i)).set_weights(weights)

    weights = model.get_layer(name='predictions').get_weights()
    model_final.get_layer(name='predictions').set_weights(weights)

    model_final.save(os.path.join(checkpoints_dir, "model.h5"))
    with open(os.path.join(checkpoints_dir, "labels.txt"), "w") as f:
        f.write("\n".join(labels))
    return model_final 
开发者ID:mme,项目名称:vergeml,代码行数:22,代码来源:imagenet.py

示例2: get_custom_architecture

# 需要导入模块: from keras import models [as 别名]
# 或者: from keras.models import Model [as 别名]
def get_custom_architecture(name, trainings_dir, output_layer):
    from keras.models import load_model, Model
    name = name.lstrip("@")
    model = load_model(os.path.join(trainings_dir, name, 'checkpoints', 'model.h5'))
    try:
        if isinstance(output_layer, int):
            layer = model.layers[output_layer]
        else:
            layer = model.get_layer(output_layer)
    except Exception:
        if isinstance(output_layer, int):
            raise VergeMLError(f'output-layer {output_layer} not found - model has only {len(model.layers)} layers.')
        else:
            candidates = list(map(lambda l: l.name, model.layers))
            raise VergeMLError(f'output-layer named {output_layer} not found.',
                               suggestion=did_you_mean(candidates, output_layer))
    model = Model(inputs=model.input, outputs=layer.output)
    return model 
开发者ID:mme,项目名称:vergeml,代码行数:20,代码来源:features.py

示例3: RNNModel

# 需要导入模块: from keras import models [as 别名]
# 或者: from keras.models import Model [as 别名]
def RNNModel(vocab_size, max_len, rnnConfig, model_type):
	embedding_size = rnnConfig['embedding_size']
	if model_type == 'inceptionv3':
		# InceptionV3 outputs a 2048 dimensional vector for each image, which we'll feed to RNN Model
		image_input = Input(shape=(2048,))
	elif model_type == 'vgg16':
		# VGG16 outputs a 4096 dimensional vector for each image, which we'll feed to RNN Model
		image_input = Input(shape=(4096,))
	image_model_1 = Dropout(rnnConfig['dropout'])(image_input)
	image_model = Dense(embedding_size, activation='relu')(image_model_1)

	caption_input = Input(shape=(max_len,))
	# mask_zero: We zero pad inputs to the same length, the zero mask ignores those inputs. E.g. it is an efficiency.
	caption_model_1 = Embedding(vocab_size, embedding_size, mask_zero=True)(caption_input)
	caption_model_2 = Dropout(rnnConfig['dropout'])(caption_model_1)
	caption_model = LSTM(rnnConfig['LSTM_units'])(caption_model_2)

	# Merging the models and creating a softmax classifier
	final_model_1 = concatenate([image_model, caption_model])
	final_model_2 = Dense(rnnConfig['dense_units'], activation='relu')(final_model_1)
	final_model = Dense(vocab_size, activation='softmax')(final_model_2)

	model = Model(inputs=[image_input, caption_input], outputs=final_model)
	model.compile(loss='categorical_crossentropy', optimizer='adam')
	return model 
开发者ID:dabasajay,项目名称:Image-Caption-Generator,代码行数:27,代码来源:model.py

示例4: create_model

# 需要导入模块: from keras import models [as 别名]
# 或者: from keras.models import Model [as 别名]
def create_model(self, input_dim):
        encoding_dim = 14
        input_layer = Input(shape=(input_dim,))

        encoder = Dense(encoding_dim, activation="tanh",
                        activity_regularizer=regularizers.l1(10e-5))(input_layer)
        encoder = Dense(encoding_dim // 2, activation="relu")(encoder)

        decoder = Dense(encoding_dim // 2, activation='tanh')(encoder)
        decoder = Dense(input_dim, activation='relu')(decoder)

        model = Model(inputs=input_layer, outputs=decoder)
        model.compile(optimizer='adam',
                      loss='mean_squared_error',
                      metrics=['accuracy'])

        return model 
开发者ID:chen0040,项目名称:keras-anomaly-detection,代码行数:19,代码来源:feedforward.py

示例5: weather_l2

# 需要导入模块: from keras import models [as 别名]
# 或者: from keras.models import Model [as 别名]
def weather_l2(hidden_nums=100,l2=0.01): 
    input_img = Input(shape=(37,))
    hn = Dense(hidden_nums, activation='relu')(input_img)
    hn = Dense(hidden_nums, activation='relu',
               kernel_regularizer=regularizers.l2(l2))(hn)
    out_u = Dense(37, activation='sigmoid',                 
                  name='ae_part')(hn)
    out_sig = Dense(37, activation='linear', 
                    name='pred_part')(hn)
    out_both = concatenate([out_u, out_sig], axis=1, name = 'concatenate')

    #weather_model = Model(input_img, outputs=[out_ae, out_pred])
    mve_model = Model(input_img, outputs=[out_both])
    mve_model.compile(optimizer='adam', loss=mve_loss, loss_weights=[1.])
    
    return mve_model 
开发者ID:BruceBinBoxing,项目名称:Deep_Learning_Weather_Forecasting,代码行数:18,代码来源:weather_model.py

示例6: CausalCNN

# 需要导入模块: from keras import models [as 别名]
# 或者: from keras.models import Model [as 别名]
def CausalCNN(n_filters, lr, decay, loss, 
               seq_len, input_features, 
               strides_len, kernel_size,
               dilation_rates):

    inputs = Input(shape=(seq_len, input_features), name='input_layer')   
    x=inputs
    for dilation_rate in dilation_rates:
        x = Conv1D(filters=n_filters,
               kernel_size=kernel_size, 
               padding='causal',
               dilation_rate=dilation_rate,
               activation='linear')(x) 
        x = BatchNormalization()(x)
        x = Activation('relu')(x)

    #x = Dense(7, activation='relu', name='dense_layer')(x)
    outputs = Dense(3, activation='sigmoid', name='output_layer')(x)
    causalcnn = Model(inputs, outputs=[outputs])

    return causalcnn 
开发者ID:BruceBinBoxing,项目名称:Deep_Learning_Weather_Forecasting,代码行数:23,代码来源:weather_model.py

示例7: weather_ae

# 需要导入模块: from keras import models [as 别名]
# 或者: from keras.models import Model [as 别名]
def weather_ae(layers, lr, decay, loss, 
               input_len, input_features):
    
    inputs = Input(shape=(input_len, input_features), name='input_layer')
    
    for i, hidden_nums in enumerate(layers):
        if i==0:
            hn = Dense(hidden_nums, activation='relu')(inputs)
        else:
            hn = Dense(hidden_nums, activation='relu')(hn)

    outputs = Dense(3, activation='sigmoid', name='output_layer')(hn)

    weather_model = Model(inputs, outputs=[outputs])

    return weather_model 
开发者ID:BruceBinBoxing,项目名称:Deep_Learning_Weather_Forecasting,代码行数:18,代码来源:weather_model.py

示例8: __init__

# 需要导入模块: from keras import models [as 别名]
# 或者: from keras.models import Model [as 别名]
def __init__(self, model_path=None):
        if model_path is not None:
            self.model = self.load_model(model_path)
        else:
            # VGG16 last conv features
            inputs = Input(shape=(7, 7, 512))
            x = Convolution2D(128, 1, 1)(inputs)
            x = Flatten()(x)

            # Cls head
            h_cls = Dense(256, activation='relu', W_regularizer=l2(l=0.01))(x)
            h_cls = Dropout(p=0.5)(h_cls)
            cls_head = Dense(20, activation='softmax', name='cls')(h_cls)

            # Reg head
            h_reg = Dense(256, activation='relu', W_regularizer=l2(l=0.01))(x)
            h_reg = Dropout(p=0.5)(h_reg)
            reg_head = Dense(4, activation='linear', name='reg')(h_reg)

            # Joint model
            self.model = Model(input=inputs, output=[cls_head, reg_head]) 
开发者ID:wiseodd,项目名称:cnn-levelset,代码行数:23,代码来源:localizer.py

示例9: build_generator

# 需要导入模块: from keras import models [as 别名]
# 或者: from keras.models import Model [as 别名]
def build_generator(self):

        model = Sequential()

        model.add(Dense(128 * 7 * 7, activation="relu", input_dim=self.latent_dim))
        model.add(Reshape((7, 7, 128)))
        model.add(BatchNormalization(momentum=0.8))
        model.add(UpSampling2D())
        model.add(Conv2D(128, kernel_size=3, padding="same"))
        model.add(Activation("relu"))
        model.add(BatchNormalization(momentum=0.8))
        model.add(UpSampling2D())
        model.add(Conv2D(64, kernel_size=3, padding="same"))
        model.add(Activation("relu"))
        model.add(BatchNormalization(momentum=0.8))
        model.add(Conv2D(1, kernel_size=3, padding="same"))
        model.add(Activation("tanh"))

        model.summary()

        noise = Input(shape=(self.latent_dim,))
        img = model(noise)

        return Model(noise, img) 
开发者ID:eriklindernoren,项目名称:Keras-GAN,代码行数:26,代码来源:sgan.py

示例10: build_discriminator

# 需要导入模块: from keras import models [as 别名]
# 或者: from keras.models import Model [as 别名]
def build_discriminator(self):

        def d_layer(layer_input, filters, f_size=4, normalization=True):
            """Discriminator layer"""
            d = Conv2D(filters, kernel_size=f_size, strides=2, padding='same')(layer_input)
            d = LeakyReLU(alpha=0.2)(d)
            if normalization:
                d = InstanceNormalization()(d)
            return d

        img = Input(shape=self.img_shape)

        d1 = d_layer(img, self.df, normalization=False)
        d2 = d_layer(d1, self.df*2)
        d3 = d_layer(d2, self.df*4)
        d4 = d_layer(d3, self.df*8)

        validity = Conv2D(1, kernel_size=4, strides=1, padding='same')(d4)

        return Model(img, validity) 
开发者ID:eriklindernoren,项目名称:Keras-GAN,代码行数:22,代码来源:discogan.py

示例11: build_discriminator

# 需要导入模块: from keras import models [as 别名]
# 或者: from keras.models import Model [as 别名]
def build_discriminator(self):

        img = Input(shape=self.img_shape)

        model = Sequential()
        model.add(Conv2D(64, kernel_size=4, strides=2, padding='same', input_shape=self.img_shape))
        model.add(LeakyReLU(alpha=0.8))
        model.add(Conv2D(128, kernel_size=4, strides=2, padding='same'))
        model.add(LeakyReLU(alpha=0.2))
        model.add(InstanceNormalization())
        model.add(Conv2D(256, kernel_size=4, strides=2, padding='same'))
        model.add(LeakyReLU(alpha=0.2))
        model.add(InstanceNormalization())

        model.summary()

        img = Input(shape=self.img_shape)
        features = model(img)

        validity = Conv2D(1, kernel_size=4, strides=1, padding='same')(features)

        label = Flatten()(features)
        label = Dense(self.num_classes+1, activation="softmax")(label)

        return Model(img, [validity, label]) 
开发者ID:eriklindernoren,项目名称:Keras-GAN,代码行数:27,代码来源:ccgan.py

示例12: build_encoder

# 需要导入模块: from keras import models [as 别名]
# 或者: from keras.models import Model [as 别名]
def build_encoder(self):
        model = Sequential()

        model.add(Flatten(input_shape=self.img_shape))
        model.add(Dense(512))
        model.add(LeakyReLU(alpha=0.2))
        model.add(BatchNormalization(momentum=0.8))
        model.add(Dense(512))
        model.add(LeakyReLU(alpha=0.2))
        model.add(BatchNormalization(momentum=0.8))
        model.add(Dense(self.latent_dim))

        model.summary()

        img = Input(shape=self.img_shape)
        z = model(img)

        return Model(img, z) 
开发者ID:eriklindernoren,项目名称:Keras-GAN,代码行数:20,代码来源:bigan.py

示例13: build_generator

# 需要导入模块: from keras import models [as 别名]
# 或者: from keras.models import Model [as 别名]
def build_generator(self):
        model = Sequential()

        model.add(Dense(512, input_dim=self.latent_dim))
        model.add(LeakyReLU(alpha=0.2))
        model.add(BatchNormalization(momentum=0.8))
        model.add(Dense(512))
        model.add(LeakyReLU(alpha=0.2))
        model.add(BatchNormalization(momentum=0.8))
        model.add(Dense(np.prod(self.img_shape), activation='tanh'))
        model.add(Reshape(self.img_shape))

        model.summary()

        z = Input(shape=(self.latent_dim,))
        gen_img = model(z)

        return Model(z, gen_img) 
开发者ID:eriklindernoren,项目名称:Keras-GAN,代码行数:20,代码来源:bigan.py

示例14: build_discriminator

# 需要导入模块: from keras import models [as 别名]
# 或者: from keras.models import Model [as 别名]
def build_discriminator(self):

        z = Input(shape=(self.latent_dim, ))
        img = Input(shape=self.img_shape)
        d_in = concatenate([z, Flatten()(img)])

        model = Dense(1024)(d_in)
        model = LeakyReLU(alpha=0.2)(model)
        model = Dropout(0.5)(model)
        model = Dense(1024)(model)
        model = LeakyReLU(alpha=0.2)(model)
        model = Dropout(0.5)(model)
        model = Dense(1024)(model)
        model = LeakyReLU(alpha=0.2)(model)
        model = Dropout(0.5)(model)
        validity = Dense(1, activation="sigmoid")(model)

        return Model([z, img], validity) 
开发者ID:eriklindernoren,项目名称:Keras-GAN,代码行数:20,代码来源:bigan.py

示例15: build_vgg

# 需要导入模块: from keras import models [as 别名]
# 或者: from keras.models import Model [as 别名]
def build_vgg(self):
        """
        Builds a pre-trained VGG19 model that outputs image features extracted at the
        third block of the model
        """
        vgg = VGG19(weights="imagenet")
        # Set outputs to outputs of last conv. layer in block 3
        # See architecture at: https://github.com/keras-team/keras/blob/master/keras/applications/vgg19.py
        vgg.outputs = [vgg.layers[9].output]

        img = Input(shape=self.hr_shape)

        # Extract image features
        img_features = vgg(img)

        return Model(img, img_features) 
开发者ID:eriklindernoren,项目名称:Keras-GAN,代码行数:18,代码来源:srgan.py


注:本文中的keras.models.Model方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。