当前位置: 首页>>代码示例>>Python>>正文


Python Model.from_config方法代码示例

本文整理汇总了Python中keras.models.Model.from_config方法的典型用法代码示例。如果您正苦于以下问题:Python Model.from_config方法的具体用法?Python Model.from_config怎么用?Python Model.from_config使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在keras.models.Model的用法示例。


在下文中一共展示了Model.from_config方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: from_config

# 需要导入模块: from keras.models import Model [as 别名]
# 或者: from keras.models.Model import from_config [as 别名]
def from_config(cls, config, custom_objects={}):
        if type(custom_objects) is list:
            custom_objects = {obj.__name__: obj for obj in custom_objects}
        custom_objects.update(_get_cells())
        config = config.copy()
        model_config = config.pop('model_config')
        if model_config is None:
            model = None
        else:
            model = Model.from_config(model_config, custom_objects)
        if type(model.input) is list:
            input = model.input[0]
            initial_states = model.input[1:]
        else:
            input = model.input
            initial_states = None
        if type(model.output) is list:
            output = model.output[0]
            final_states = model.output[1:]
        else:
            output = model.output
            final_states = None
        return cls(input, output, initial_states, final_states, **config) 
开发者ID:farizrahman4u,项目名称:recurrentshop,代码行数:25,代码来源:engine.py

示例2: test_layer_call_arguments

# 需要导入模块: from keras.models import Model [as 别名]
# 或者: from keras.models.Model import from_config [as 别名]
def test_layer_call_arguments():
    # Test the ability to pass and serialize arguments to `call`.
    inp = layers.Input(shape=(2,))
    x = layers.Dense(3)(inp)
    x = layers.Dropout(0.5)(x, training=True)
    model = Model(inp, x)
    assert not model.uses_learning_phase

    # Test that argument is kept when applying the model
    inp2 = layers.Input(shape=(2,))
    out2 = model(inp2)
    assert not out2._uses_learning_phase

    # Test that argument is kept after loading a model
    config = model.get_config()
    model = Model.from_config(config)
    assert not model.uses_learning_phase 
开发者ID:hello-sea,项目名称:DeepLearning_Wavelet-LSTM,代码行数:19,代码来源:test_topology.py

示例3: test_layer_sharing_at_heterogeneous_depth

# 需要导入模块: from keras.models import Model [as 别名]
# 或者: from keras.models.Model import from_config [as 别名]
def test_layer_sharing_at_heterogeneous_depth():
    x_val = np.random.random((10, 5))

    x = Input(shape=(5,))
    A = Dense(5, name='A')
    B = Dense(5, name='B')
    output = A(B(A(B(x))))
    M = Model(x, output)

    output_val = M.predict(x_val)

    config = M.get_config()
    weights = M.get_weights()

    M2 = Model.from_config(config)
    M2.set_weights(weights)

    output_val_2 = M2.predict(x_val)
    np.testing.assert_allclose(output_val, output_val_2, atol=1e-6) 
开发者ID:hello-sea,项目名称:DeepLearning_Wavelet-LSTM,代码行数:21,代码来源:test_topology.py

示例4: test_layer_sharing_at_heterogeneous_depth_with_concat

# 需要导入模块: from keras.models import Model [as 别名]
# 或者: from keras.models.Model import from_config [as 别名]
def test_layer_sharing_at_heterogeneous_depth_with_concat():
    input_shape = (16, 9, 3)
    input_layer = Input(shape=input_shape)

    A = Dense(3, name='dense_A')
    B = Dense(3, name='dense_B')
    C = Dense(3, name='dense_C')

    x1 = B(A(input_layer))
    x2 = A(C(input_layer))
    output = layers.concatenate([x1, x2])

    M = Model(inputs=input_layer, outputs=output)

    x_val = np.random.random((10, 16, 9, 3))
    output_val = M.predict(x_val)

    config = M.get_config()
    weights = M.get_weights()

    M2 = Model.from_config(config)
    M2.set_weights(weights)

    output_val_2 = M2.predict(x_val)
    np.testing.assert_allclose(output_val, output_val_2, atol=1e-6) 
开发者ID:hello-sea,项目名称:DeepLearning_Wavelet-LSTM,代码行数:27,代码来源:test_topology.py

示例5: test_activity_regularization

# 需要导入模块: from keras.models import Model [as 别名]
# 或者: from keras.models.Model import from_config [as 别名]
def test_activity_regularization():
    layer = layers.ActivityRegularization(l1=0.01, l2=0.01)

    # test in functional API
    x = layers.Input(shape=(3,))
    z = layers.Dense(2)(x)
    y = layer(z)
    model = Model(x, y)
    model.compile('rmsprop', 'mse')

    model.predict(np.random.random((2, 3)))

    # test serialization
    model_config = model.get_config()
    model = Model.from_config(model_config)
    model.compile('rmsprop', 'mse') 
开发者ID:hello-sea,项目名称:DeepLearning_Wavelet-LSTM,代码行数:18,代码来源:core_test.py

示例6: reset_pingpong

# 需要导入模块: from keras.models import Model [as 别名]
# 或者: from keras.models.Model import from_config [as 别名]
def reset_pingpong(self):
        """ Reset the models for pingpong training """
        logger.debug("Resetting models")

        # Clear models and graph
        self.predictors = dict()
        K.clear_session()

        # Load Models for current training run
        for model in self.networks.values():
            model.network = Model.from_config(model.config)
            model.network.set_weights(model.weights)

        inputs = self.get_inputs()
        self.build_autoencoders(inputs)
        self.compile_predictors(initialize=False)
        logger.debug("Reset models") 
开发者ID:deepfakes,项目名称:faceswap,代码行数:19,代码来源:_base.py


注:本文中的keras.models.Model.from_config方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。