本文整理汇总了Python中keras.metrics.categorical_accuracy方法的典型用法代码示例。如果您正苦于以下问题:Python metrics.categorical_accuracy方法的具体用法?Python metrics.categorical_accuracy怎么用?Python metrics.categorical_accuracy使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类keras.metrics
的用法示例。
在下文中一共展示了metrics.categorical_accuracy方法的13个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: fit_new
# 需要导入模块: from keras import metrics [as 别名]
# 或者: from keras.metrics import categorical_accuracy [as 别名]
def fit_new(self, x, y=None):
timesteps = x.shape[1]
input_dim = x.shape[2]
self.ae = Sequential()
self.ae.add(Dense(self.latent_dim,
input_shape=(timesteps,input_dim,),
activation='relu',
name='enc'))
self.ae.add(Dropout(0.2))
self.ae.add(Dense(input_dim,
activation='softmax',
name='dec'))
self.encoder = Model(inputs=self.ae.input,
outputs=self.ae.get_layer('enc').output)
#rmsprop = RMSprop(lr=0.05)
self.ae.compile(loss='categorical_crossentropy',
optimizer='adam',
metrics=['categorical_accuracy'],)
self.ae.fit(x, x, epochs=1)
示例2: test_functional_model_saving
# 需要导入模块: from keras import metrics [as 别名]
# 或者: from keras.metrics import categorical_accuracy [as 别名]
def test_functional_model_saving():
inputs = Input(shape=(3,))
x = Dense(2)(inputs)
outputs = Dense(3)(x)
model = Model(inputs, outputs)
model.compile(loss=losses.MSE,
optimizer=optimizers.Adam(),
metrics=[metrics.categorical_accuracy])
x = np.random.random((1, 3))
y = np.random.random((1, 3))
model.train_on_batch(x, y)
out = model.predict(x)
_, fname = tempfile.mkstemp('.h5')
save_model(model, fname)
model = load_model(fname)
os.remove(fname)
out2 = model.predict(x)
assert_allclose(out, out2, atol=1e-05)
示例3: test_saving_lambda_custom_objects
# 需要导入模块: from keras import metrics [as 别名]
# 或者: from keras.metrics import categorical_accuracy [as 别名]
def test_saving_lambda_custom_objects():
inputs = Input(shape=(3,))
x = Lambda(lambda x: square_fn(x), output_shape=(3,))(inputs)
outputs = Dense(3)(x)
model = Model(inputs, outputs)
model.compile(loss=losses.MSE,
optimizer=optimizers.RMSprop(lr=0.0001),
metrics=[metrics.categorical_accuracy])
x = np.random.random((1, 3))
y = np.random.random((1, 3))
model.train_on_batch(x, y)
out = model.predict(x)
_, fname = tempfile.mkstemp('.h5')
save_model(model, fname)
model = load_model(fname, custom_objects={'square_fn': square_fn})
os.remove(fname)
out2 = model.predict(x)
assert_allclose(out, out2, atol=1e-05)
示例4: truncated_acc
# 需要导入模块: from keras import metrics [as 别名]
# 或者: from keras.metrics import categorical_accuracy [as 别名]
def truncated_acc(y_true, y_pred):
y_true = y_true[:, :VAL_MAXLEN, :]
y_pred = y_pred[:, :VAL_MAXLEN, :]
acc = metrics.categorical_accuracy(y_true, y_pred)
return K.mean(acc, axis=-1)
示例5: test_functional_model_saving
# 需要导入模块: from keras import metrics [as 别名]
# 或者: from keras.metrics import categorical_accuracy [as 别名]
def test_functional_model_saving():
img_rows, img_cols = 32, 32
img_channels = 3
# Parameters for the DenseNet model builder
img_dim = (img_channels, img_rows, img_cols) if K.image_data_format() == 'channels_first' else (
img_rows, img_cols, img_channels)
depth = 40
nb_dense_block = 3
growth_rate = 3 # number of z2 maps equals growth_rate * group_size, so keep this small.
nb_filter = 16
dropout_rate = 0.0 # 0.0 for data augmentation
conv_group = 'D4' # C4 includes 90 degree rotations, D4 additionally includes reflections in x and y axis.
use_gcnn = True
# Create the model (without loading weights)
model = GDenseNet(mc_dropout=False, padding='same', nb_dense_block=nb_dense_block, growth_rate=growth_rate,
nb_filter=nb_filter, dropout_rate=dropout_rate, weights=None, input_shape=img_dim, depth=depth,
use_gcnn=use_gcnn, conv_group=conv_group)
model.compile(loss=losses.categorical_crossentropy,
optimizer=optimizers.Adam(),
metrics=[metrics.categorical_accuracy])
x = np.random.random((1, 32, 32, 3))
y = np.random.randint(0, 10, 1)
y = np_utils.to_categorical(y, 10)
model.train_on_batch(x, y)
out = model.predict(x)
_, fname = tempfile.mkstemp('.h5')
save_model(model, fname)
model = load_model(fname)
os.remove(fname)
out2 = model.predict(x)
assert_allclose(out, out2, atol=1e-05)
示例6: accuracy
# 需要导入模块: from keras import metrics [as 别名]
# 或者: from keras.metrics import categorical_accuracy [as 别名]
def accuracy(self, y_true, y_pred):
y_true_item = y_true[:, :self.n_classes]
return categorical_accuracy(y_true_item, y_pred)
示例7: fit
# 需要导入模块: from keras import metrics [as 别名]
# 或者: from keras.metrics import categorical_accuracy [as 别名]
def fit(self, x, y=None):
timesteps = x.shape[1]
input_dim = x.shape[2]
self.ae = Sequential()
#m.add(LSTM(latent_dim, input_dim=in_dim, return_sequen|ces=True, name='enc'), )
self.ae.add(LSTM(self.latent_dim,
activation='softsign',
input_shape=(timesteps,input_dim,),
return_sequences=True,
unroll=True,
name='enc'), )
self.ae.add(LSTM(input_dim,
activation='softsign',
return_sequences=True,
unroll=True,
name='dec',
))
self.ae.add(Activation('softmax'))
self.encoder = Model(inputs=self.ae.input,
outputs=self.ae.get_layer('enc').output)
rmsprop = RMSprop(lr=0.005)
self.ae.compile(loss='categorical_hinge',
optimizer=rmsprop,
metrics=['categorical_accuracy', 'binary_accuracy'],)
self.ae.fit(x, x, epochs=1)
示例8: baseline_model
# 需要导入模块: from keras import metrics [as 别名]
# 或者: from keras.metrics import categorical_accuracy [as 别名]
def baseline_model():
# Initialising the CNN
model = Sequential()
# 1 - Convolution
model.add(Conv2D(64,(3,3), border_mode='same', input_shape=(48, 48,1)))
model.add(BatchNormalization())
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
# 2nd Convolution layer
model.add(Conv2D(128,(5,5), border_mode='same'))
model.add(BatchNormalization())
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
# Flattening
model.add(Flatten())
# Fully connected layer 1st layer
model.add(Dense(256))
model.add(BatchNormalization())
model.add(Activation('relu'))
model.add(Dropout(0.25))
model.add(Dense(num_class, activation='sigmoid'))
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=[categorical_accuracy])
return model
示例9: baseline_model_saved
# 需要导入模块: from keras import metrics [as 别名]
# 或者: from keras.metrics import categorical_accuracy [as 别名]
def baseline_model_saved():
#load json and create model
json_file = open('model_2layer_2_2_pool.json', 'r')
loaded_model_json = json_file.read()
json_file.close()
model = model_from_json(loaded_model_json)
#load weights from h5 file
model.load_weights("model_2layer_2_2_pool.h5")
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=[categorical_accuracy])
return model
示例10: baseline_model_saved
# 需要导入模块: from keras import metrics [as 别名]
# 或者: from keras.metrics import categorical_accuracy [as 别名]
def baseline_model_saved():
#load json and create model
json_file = open('model_4layer_2_2_pool.json', 'r')
loaded_model_json = json_file.read()
json_file.close()
model = model_from_json(loaded_model_json)
#load weights from h5 file
model.load_weights("model_4layer_2_2_pool.h5")
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=[categorical_accuracy])
return model
示例11: test_sequential_model_saving
# 需要导入模块: from keras import metrics [as 别名]
# 或者: from keras.metrics import categorical_accuracy [as 别名]
def test_sequential_model_saving():
model = Sequential()
model.add(Dense(2, input_shape=(3,)))
model.add(RepeatVector(3))
model.add(TimeDistributed(Dense(3)))
model.compile(loss=losses.MSE,
optimizer=optimizers.RMSprop(lr=0.0001),
metrics=[metrics.categorical_accuracy],
sample_weight_mode='temporal')
x = np.random.random((1, 3))
y = np.random.random((1, 3, 3))
model.train_on_batch(x, y)
out = model.predict(x)
_, fname = tempfile.mkstemp('.h5')
save_model(model, fname)
new_model = load_model(fname)
os.remove(fname)
out2 = new_model.predict(x)
assert_allclose(out, out2, atol=1e-05)
# test that new updates are the same with both models
x = np.random.random((1, 3))
y = np.random.random((1, 3, 3))
model.train_on_batch(x, y)
new_model.train_on_batch(x, y)
out = model.predict(x)
out2 = new_model.predict(x)
assert_allclose(out, out2, atol=1e-05)
示例12: test_model_saving_to_pre_created_h5py_file
# 需要导入模块: from keras import metrics [as 别名]
# 或者: from keras.metrics import categorical_accuracy [as 别名]
def test_model_saving_to_pre_created_h5py_file():
inputs = Input(shape=(3,))
x = Dense(2)(inputs)
outputs = Dense(3)(x)
model = Model(inputs, outputs)
model.compile(loss=losses.MSE,
optimizer=optimizers.Adam(),
metrics=[metrics.categorical_accuracy])
x = np.random.random((1, 3))
y = np.random.random((1, 3))
model.train_on_batch(x, y)
out = model.predict(x)
_, fname = tempfile.mkstemp('.h5')
with h5py.File(fname, mode='r+') as h5file:
save_model(model, h5file)
loaded_model = load_model(h5file)
out2 = loaded_model.predict(x)
assert_allclose(out, out2, atol=1e-05)
# test non-default options in h5
with h5py.File('does not matter', driver='core',
backing_store=False) as h5file:
save_model(model, h5file)
loaded_model = load_model(h5file)
out2 = loaded_model.predict(x)
assert_allclose(out, out2, atol=1e-05)
示例13: test_model_saving_to_binary_stream
# 需要导入模块: from keras import metrics [as 别名]
# 或者: from keras.metrics import categorical_accuracy [as 别名]
def test_model_saving_to_binary_stream():
inputs = Input(shape=(3,))
x = Dense(2)(inputs)
outputs = Dense(3)(x)
model = Model(inputs, outputs)
model.compile(loss=losses.MSE,
optimizer=optimizers.Adam(),
metrics=[metrics.categorical_accuracy])
x = np.random.random((1, 3))
y = np.random.random((1, 3))
model.train_on_batch(x, y)
out = model.predict(x)
_, fname = tempfile.mkstemp('.h5')
with h5py.File(fname, mode='r+') as h5file:
save_model(model, h5file)
loaded_model = load_model(h5file)
out2 = loaded_model.predict(x)
assert_allclose(out, out2, atol=1e-05)
# Save the model to an in-memory-only h5 file.
with h5py.File('does not matter', driver='core',
backing_store=False) as h5file:
save_model(model, h5file)
h5file.flush() # Very important! Otherwise you get all zeroes below.
binary_data = h5file.fid.get_file_image()
# Make sure the binary data is correct by saving it to a file manually
# and then loading it the usual way.
with open(fname, 'wb') as raw_file:
raw_file.write(binary_data)
# Load the manually-saved binary data, and make sure the model is intact.
with h5py.File(fname, mode='r') as h5file:
loaded_model = load_model(h5file)
out2 = loaded_model.predict(x)
assert_allclose(out, out2, atol=1e-05)