当前位置: 首页>>代码示例>>Python>>正文


Python metrics.binary_accuracy方法代码示例

本文整理汇总了Python中keras.metrics.binary_accuracy方法的典型用法代码示例。如果您正苦于以下问题:Python metrics.binary_accuracy方法的具体用法?Python metrics.binary_accuracy怎么用?Python metrics.binary_accuracy使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在keras.metrics的用法示例。


在下文中一共展示了metrics.binary_accuracy方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: create_model

# 需要导入模块: from keras import metrics [as 别名]
# 或者: from keras.metrics import binary_accuracy [as 别名]
def create_model():
    model = Sequential()
    model.add(Dense(50, input_dim=12, kernel_initializer='lecun_uniform', activation = 'tanh'))
    model.add(Dropout(0.50))
    model.add(Dense(50, kernel_initializer='lecun_uniform', activation= 'tanh'))
    model.add(Dropout(0.50))
    model.add(Dense(50, kernel_initializer='lecun_uniform', activation= 'tanh'))
    model.add(Dropout(0.50))
    model.add(Dense(50, kernel_initializer='lecun_uniform', activation= 'tanh'))
    model.add(Dropout(0.50))
    model.add(Dense(50, kernel_initializer='lecun_uniform', activation= 'tanh'))
    model.add(Dropout(0.50))
    model.add(Dense(50, kernel_initializer='lecun_uniform', activation= 'tanh'))
    model.add(Dropout(0.50))
    model.add(Dense(1, kernel_initializer='lecun_uniform', activation='sigmoid'))
    model.compile(optimizer='adadelta', loss='binary_crossentropy', metrics=[metrics.binary_accuracy])
    return model 
开发者ID:phoebemrdevries,项目名称:Learning-aftershock-location-patterns,代码行数:19,代码来源:modelfunctions.py

示例2: optimizer

# 需要导入模块: from keras import metrics [as 别名]
# 或者: from keras.metrics import binary_accuracy [as 别名]
def optimizer():
    from ..tunable import Tunable

    class RankerStub(Tunable):
        def fit(self, X, Y, **kwargs):
            self.seed = int(np.sum(list(self.__dict__.values())))

        def predict(self, X, **kwargs):
            random_state = np.random.RandomState(self.seed)
            weight = random_state.rand(n_features, 2)
            scores = np.dot(X, weight) / np.dot(X, weight).sum(axis=1)[:, None]
            return scores.argmax(axis=1)

        def set_tunable_parameters(self, **point):
            self.__dict__.update(point)

        def __call__(self, X, *args, **kwargs):
            return self.predict(X, **kwargs)

    ranker = RankerStub()

    rankers = [RankerStub() for _ in range(2)]
    test_params = {
        rankers[0]: dict(a=(1.0, 4.0)),
        ranker: dict(b=(4.0, 7.0), c=(7.0, 10.0)),
        rankers[1]: dict(d=(10.0, 13.0)),
    }

    opt = ParameterOptimizer(
        learner=ranker,
        optimizer_path=OPTIMIZER_PATH,
        tunable_parameter_ranges=test_params,
        ranker_params=dict(),
        validation_loss=binary_accuracy,
    )
    return opt, rankers, test_params 
开发者ID:kiudee,项目名称:cs-ranking,代码行数:38,代码来源:test_tuning.py

示例3: get_net

# 需要导入模块: from keras import metrics [as 别名]
# 或者: from keras.metrics import binary_accuracy [as 别名]
def get_net(input_shape=(CUBE_SIZE, CUBE_SIZE, CUBE_SIZE, 1), load_weight_path=None, features=False, mal=False) -> Model:
    inputs = Input(shape=input_shape, name="input_1")
    x = inputs
    x = AveragePooling3D(pool_size=(2, 1, 1), strides=(2, 1, 1), border_mode="same")(x)
    x = Convolution3D(64, 3, 3, 3, activation='relu', border_mode='same', name='conv1', subsample=(1, 1, 1))(x)
    x = MaxPooling3D(pool_size=(1, 2, 2), strides=(1, 2, 2), border_mode='valid', name='pool1')(x)

    # 2nd layer group
    x = Convolution3D(128, 3, 3, 3, activation='relu', border_mode='same', name='conv2', subsample=(1, 1, 1))(x)
    x = MaxPooling3D(pool_size=(2, 2, 2), strides=(2, 2, 2), border_mode='valid', name='pool2')(x)
    if USE_DROPOUT:
        x = Dropout(p=0.3)(x)

    # 3rd layer group
    x = Convolution3D(256, 3, 3, 3, activation='relu', border_mode='same', name='conv3a', subsample=(1, 1, 1))(x)
    x = Convolution3D(256, 3, 3, 3, activation='relu', border_mode='same', name='conv3b', subsample=(1, 1, 1))(x)
    x = MaxPooling3D(pool_size=(2, 2, 2), strides=(2, 2, 2), border_mode='valid', name='pool3')(x)
    if USE_DROPOUT:
        x = Dropout(p=0.4)(x)

    # 4th layer group
    x = Convolution3D(512, 3, 3, 3, activation='relu', border_mode='same', name='conv4a', subsample=(1, 1, 1))(x)
    x = Convolution3D(512, 3, 3, 3, activation='relu', border_mode='same', name='conv4b', subsample=(1, 1, 1),)(x)
    x = MaxPooling3D(pool_size=(2, 2, 2), strides=(2, 2, 2), border_mode='valid', name='pool4')(x)
    if USE_DROPOUT:
        x = Dropout(p=0.5)(x)

    last64 = Convolution3D(64, 2, 2, 2, activation="relu", name="last_64")(x)
    out_class = Convolution3D(1, 1, 1, 1, activation="sigmoid", name="out_class_last")(last64)
    out_class = Flatten(name="out_class")(out_class)

    out_malignancy = Convolution3D(1, 1, 1, 1, activation=None, name="out_malignancy_last")(last64)
    out_malignancy = Flatten(name="out_malignancy")(out_malignancy)

    model = Model(input=inputs, output=[out_class, out_malignancy])
    if load_weight_path is not None:
        model.load_weights(load_weight_path, by_name=False)
    model.compile(optimizer=SGD(lr=LEARN_RATE, momentum=0.9, nesterov=True), loss={"out_class": "binary_crossentropy", "out_malignancy": mean_absolute_error}, metrics={"out_class": [binary_accuracy, binary_crossentropy], "out_malignancy": mean_absolute_error})

    if features:
        model = Model(input=inputs, output=[last64])
    model.summary(line_length=140)

    return model 
开发者ID:juliandewit,项目名称:kaggle_ndsb2017,代码行数:46,代码来源:step2_train_nodule_detector.py


注:本文中的keras.metrics.binary_accuracy方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。