当前位置: 首页>>代码示例>>Python>>正文


Python pooling.MaxPooling2D方法代码示例

本文整理汇总了Python中keras.layers.pooling.MaxPooling2D方法的典型用法代码示例。如果您正苦于以下问题:Python pooling.MaxPooling2D方法的具体用法?Python pooling.MaxPooling2D怎么用?Python pooling.MaxPooling2D使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在keras.layers.pooling的用法示例。


在下文中一共展示了pooling.MaxPooling2D方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: __initial_conv_block_inception

# 需要导入模块: from keras.layers import pooling [as 别名]
# 或者: from keras.layers.pooling import MaxPooling2D [as 别名]
def __initial_conv_block_inception(input, weight_decay=5e-4):
    ''' Adds an initial conv block, with batch norm and relu for the inception resnext
    Args:
        input: input tensor
        weight_decay: weight decay factor
    Returns: a keras tensor
    '''
    channel_axis = 1 if K.image_data_format() == 'channels_first' else -1

    x = Conv2D(64, (7, 7), padding='same', use_bias=False, kernel_initializer='he_normal',
               kernel_regularizer=l2(weight_decay), strides=(2, 2))(input)
    x = BatchNormalization(axis=channel_axis)(x)
    x = LeakyReLU()(x)

    x = MaxPooling2D((3, 3), strides=(2, 2), padding='same')(x)

    return x 
开发者ID:kobiso,项目名称:CBAM-keras,代码行数:19,代码来源:resnext.py

示例2: inception_block_1c

# 需要导入模块: from keras.layers import pooling [as 别名]
# 或者: from keras.layers.pooling import MaxPooling2D [as 别名]
def inception_block_1c(X):
    X_3x3 = fr_utils.conv2d_bn(X,
                           layer='inception_3c_3x3',
                           cv1_out=128,
                           cv1_filter=(1, 1),
                           cv2_out=256,
                           cv2_filter=(3, 3),
                           cv2_strides=(2, 2),
                           padding=(1, 1))

    X_5x5 = fr_utils.conv2d_bn(X,
                           layer='inception_3c_5x5',
                           cv1_out=32,
                           cv1_filter=(1, 1),
                           cv2_out=64,
                           cv2_filter=(5, 5),
                           cv2_strides=(2, 2),
                           padding=(2, 2))

    X_pool = MaxPooling2D(pool_size=3, strides=2, data_format='channels_first')(X)
    X_pool = ZeroPadding2D(padding=((0, 1), (0, 1)), data_format='channels_first')(X_pool)

    inception = concatenate([X_3x3, X_5x5, X_pool], axis=1)

    return inception 
开发者ID:akshaybahadur21,项目名称:Facial-Recognition-using-Facenet,代码行数:27,代码来源:inception_blocks_v2.py

示例3: inception_block_2b

# 需要导入模块: from keras.layers import pooling [as 别名]
# 或者: from keras.layers.pooling import MaxPooling2D [as 别名]
def inception_block_2b(X):
    #inception4e
    X_3x3 = fr_utils.conv2d_bn(X,
                           layer='inception_4e_3x3',
                           cv1_out=160,
                           cv1_filter=(1, 1),
                           cv2_out=256,
                           cv2_filter=(3, 3),
                           cv2_strides=(2, 2),
                           padding=(1, 1))
    X_5x5 = fr_utils.conv2d_bn(X,
                           layer='inception_4e_5x5',
                           cv1_out=64,
                           cv1_filter=(1, 1),
                           cv2_out=128,
                           cv2_filter=(5, 5),
                           cv2_strides=(2, 2),
                           padding=(2, 2))
    
    X_pool = MaxPooling2D(pool_size=3, strides=2, data_format='channels_first')(X)
    X_pool = ZeroPadding2D(padding=((0, 1), (0, 1)), data_format='channels_first')(X_pool)

    inception = concatenate([X_3x3, X_5x5, X_pool], axis=1)

    return inception 
开发者ID:akshaybahadur21,项目名称:Facial-Recognition-using-Facenet,代码行数:27,代码来源:inception_blocks_v2.py

示例4: inception_block_3b

# 需要导入模块: from keras.layers import pooling [as 别名]
# 或者: from keras.layers.pooling import MaxPooling2D [as 别名]
def inception_block_3b(X):
    X_3x3 = fr_utils.conv2d_bn(X,
                           layer='inception_5b_3x3',
                           cv1_out=96,
                           cv1_filter=(1, 1),
                           cv2_out=384,
                           cv2_filter=(3, 3),
                           cv2_strides=(1, 1),
                           padding=(1, 1))
    X_pool = MaxPooling2D(pool_size=3, strides=2, data_format='channels_first')(X)
    X_pool = fr_utils.conv2d_bn(X_pool,
                           layer='inception_5b_pool',
                           cv1_out=96,
                           cv1_filter=(1, 1))
    X_pool = ZeroPadding2D(padding=(1, 1), data_format='channels_first')(X_pool)

    X_1x1 = fr_utils.conv2d_bn(X,
                           layer='inception_5b_1x1',
                           cv1_out=256,
                           cv1_filter=(1, 1))
    inception = concatenate([X_3x3, X_pool, X_1x1], axis=1)

    return inception 
开发者ID:akshaybahadur21,项目名称:Facial-Recognition-using-Facenet,代码行数:25,代码来源:inception_blocks_v2.py

示例5: get_simple_unet

# 需要导入模块: from keras.layers import pooling [as 别名]
# 或者: from keras.layers.pooling import MaxPooling2D [as 别名]
def get_simple_unet(input_shape):
    img_input = Input(input_shape)
    conv1 = conv_block_simple(img_input, 32, "conv1_1")
    conv1 = conv_block_simple(conv1, 32, "conv1_2")
    pool1 = MaxPooling2D((2, 2), strides=(2, 2), padding="same", name="pool1")(conv1)

    conv2 = conv_block_simple(pool1, 64, "conv2_1")
    conv2 = conv_block_simple(conv2, 64, "conv2_2")
    pool2 = MaxPooling2D((2, 2), strides=(2, 2), padding="same", name="pool2")(conv2)

    conv3 = conv_block_simple(pool2, 128, "conv3_1")
    conv3 = conv_block_simple(conv3, 128, "conv3_2")
    pool3 = MaxPooling2D((2, 2), strides=(2, 2), padding="same", name="pool3")(conv3)

    conv4 = conv_block_simple(pool3, 256, "conv4_1")
    conv4 = conv_block_simple(conv4, 256, "conv4_2")
    conv4 = conv_block_simple(conv4, 256, "conv4_3")

    up5 = concatenate([UpSampling2D()(conv4), conv3], axis=-1)
    conv5 = conv_block_simple(up5, 128, "conv5_1")
    conv5 = conv_block_simple(conv5, 128, "conv5_2")

    up6 = concatenate([UpSampling2D()(conv5), conv2], axis=-1)
    conv6 = conv_block_simple(up6, 64, "conv6_1")
    conv6 = conv_block_simple(conv6, 64, "conv6_2")

    up7 = concatenate([UpSampling2D()(conv6), conv1], axis=-1)
    conv7 = conv_block_simple(up7, 32, "conv7_1")
    conv7 = conv_block_simple(conv7, 32, "conv7_2")

    conv7 = SpatialDropout2D(0.2)(conv7)

    prediction = Conv2D(1, (1, 1), activation="sigmoid", name="prediction")(conv7)
    model = Model(img_input, prediction)
    return model 
开发者ID:killthekitten,项目名称:kaggle-carvana-2017,代码行数:37,代码来源:models.py

示例6: get_maxpool

# 需要导入模块: from keras.layers import pooling [as 别名]
# 或者: from keras.layers.pooling import MaxPooling2D [as 别名]
def get_maxpool(params):
    return MaxPooling2D(
        strides=params.get('stride', 1), 
        pool_size=params.get('size', 1), 
        padding="same") 
开发者ID:BrainsGarden,项目名称:keras-yolo,代码行数:7,代码来源:cfg_reader.py

示例7: inception_block_1a

# 需要导入模块: from keras.layers import pooling [as 别名]
# 或者: from keras.layers.pooling import MaxPooling2D [as 别名]
def inception_block_1a(X):
    """
    Implementation of an inception block
    """
    
    X_3x3 = Conv2D(96, (1, 1), data_format='channels_first', name ='inception_3a_3x3_conv1')(X)
    X_3x3 = BatchNormalization(axis=1, epsilon=0.00001, name = 'inception_3a_3x3_bn1')(X_3x3)
    X_3x3 = Activation('relu')(X_3x3)
    X_3x3 = ZeroPadding2D(padding=(1, 1), data_format='channels_first')(X_3x3)
    X_3x3 = Conv2D(128, (3, 3), data_format='channels_first', name='inception_3a_3x3_conv2')(X_3x3)
    X_3x3 = BatchNormalization(axis=1, epsilon=0.00001, name='inception_3a_3x3_bn2')(X_3x3)
    X_3x3 = Activation('relu')(X_3x3)
    
    X_5x5 = Conv2D(16, (1, 1), data_format='channels_first', name='inception_3a_5x5_conv1')(X)
    X_5x5 = BatchNormalization(axis=1, epsilon=0.00001, name='inception_3a_5x5_bn1')(X_5x5)
    X_5x5 = Activation('relu')(X_5x5)
    X_5x5 = ZeroPadding2D(padding=(2, 2), data_format='channels_first')(X_5x5)
    X_5x5 = Conv2D(32, (5, 5), data_format='channels_first', name='inception_3a_5x5_conv2')(X_5x5)
    X_5x5 = BatchNormalization(axis=1, epsilon=0.00001, name='inception_3a_5x5_bn2')(X_5x5)
    X_5x5 = Activation('relu')(X_5x5)

    X_pool = MaxPooling2D(pool_size=3, strides=2, data_format='channels_first')(X)
    X_pool = Conv2D(32, (1, 1), data_format='channels_first', name='inception_3a_pool_conv')(X_pool)
    X_pool = BatchNormalization(axis=1, epsilon=0.00001, name='inception_3a_pool_bn')(X_pool)
    X_pool = Activation('relu')(X_pool)
    X_pool = ZeroPadding2D(padding=((3, 4), (3, 4)), data_format='channels_first')(X_pool)

    X_1x1 = Conv2D(64, (1, 1), data_format='channels_first', name='inception_3a_1x1_conv')(X)
    X_1x1 = BatchNormalization(axis=1, epsilon=0.00001, name='inception_3a_1x1_bn')(X_1x1)
    X_1x1 = Activation('relu')(X_1x1)
        
    # CONCAT
    inception = concatenate([X_3x3, X_5x5, X_pool, X_1x1], axis=1)

    return inception 
开发者ID:akshaybahadur21,项目名称:Facial-Recognition-using-Facenet,代码行数:37,代码来源:inception_blocks_v2.py

示例8: create_model

# 需要导入模块: from keras.layers import pooling [as 别名]
# 或者: from keras.layers.pooling import MaxPooling2D [as 别名]
def create_model(input_shape, config, is_training=True):

    weight_decay = 0.001

    model = Sequential()

    model.add(Convolution2D(32, 7, 7, W_regularizer=l2(weight_decay), activation="relu", input_shape=input_shape))
    model.add(BatchNormalization())
    model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))

    model.add(Convolution2D(64, 5, 5, W_regularizer=l2(weight_decay), activation="relu"))
    model.add(BatchNormalization())
    model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))

    model.add(Convolution2D(128, 3, 3, W_regularizer=l2(weight_decay), activation="relu"))
    model.add(BatchNormalization())
    model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))

    model.add(Convolution2D(256, 3, 3, W_regularizer=l2(weight_decay), activation="relu"))
    model.add(BatchNormalization())
    model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))

    model.add(Convolution2D(512, 3, 3, W_regularizer=l2(weight_decay), activation="relu"))
    model.add(BatchNormalization())
    model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))

    model.add(Dropout(0.5))

    model.add(Flatten())
    model.add(Dense(1024, W_regularizer=l2(weight_decay), activation="relu"))

    model.add(Dense(config["num_classes"], activation="softmax"))

    return model 
开发者ID:HPI-DeepLearning,项目名称:crnn-lid,代码行数:36,代码来源:topcoder_deeper.py

示例9: create_model

# 需要导入模块: from keras.layers import pooling [as 别名]
# 或者: from keras.layers.pooling import MaxPooling2D [as 别名]
def create_model(input_shape, config, is_training=True):

    weight_decay = 0.001

    model = Sequential()

    model.add(Convolution2D(16, 7, 7, W_regularizer=l2(weight_decay), activation="relu", input_shape=input_shape))
    model.add(BatchNormalization())
    model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))

    model.add(Convolution2D(32, 5, 5, W_regularizer=l2(weight_decay), activation="relu"))
    model.add(BatchNormalization())
    model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))

    model.add(Convolution2D(64, 3, 3, W_regularizer=l2(weight_decay), activation="relu"))
    model.add(BatchNormalization())
    model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))

    model.add(Convolution2D(128, 3, 3, W_regularizer=l2(weight_decay), activation="relu"))
    model.add(BatchNormalization())
    model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))

    model.add(Convolution2D(256, 3, 3, W_regularizer=l2(weight_decay), activation="relu"))
    model.add(BatchNormalization())
    model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))

    model.add(Dropout(0.5))
    model.add(Flatten())

    # Restore layer weights
    model.load_weights("logs/2016-12-16-15-58-20/weights.131.model", by_name=True)

    # Retrain last two layers from scratch
    model.add(Dense(1024, W_regularizer=l2(weight_decay), activation="relu"))
    model.add(Dense(config["num_classes"], activation="softmax"))

    return model 
开发者ID:HPI-DeepLearning,项目名称:crnn-lid,代码行数:39,代码来源:topcoder_finetune.py

示例10: create_model

# 需要导入模块: from keras.layers import pooling [as 别名]
# 或者: from keras.layers.pooling import MaxPooling2D [as 别名]
def create_model(input_shape, config, is_training=True):

    weight_decay = 0.001

    model = Sequential()

    model.add(Convolution2D(16, 7, 7, W_regularizer=l2(weight_decay), activation="relu", input_shape=input_shape))
    model.add(BatchNormalization())
    model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))

    model.add(Convolution2D(32, 5, 5, W_regularizer=l2(weight_decay), activation="relu"))
    model.add(BatchNormalization())
    model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))

    model.add(Convolution2D(64, 3, 3, W_regularizer=l2(weight_decay), activation="relu"))
    model.add(BatchNormalization())
    model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))

    model.add(Convolution2D(128, 3, 3, W_regularizer=l2(weight_decay), activation="relu"))
    model.add(BatchNormalization())
    model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))

    model.add(Convolution2D(256, 3, 3, W_regularizer=l2(weight_decay), activation="relu"))
    model.add(BatchNormalization())
    model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))

    model.add(Dropout(0.5))

    model.add(Flatten())
    model.add(Dense(1024, W_regularizer=l2(weight_decay), activation="relu"))

    model.add(Dense(config["num_classes"], activation="softmax"))

    return model 
开发者ID:HPI-DeepLearning,项目名称:crnn-lid,代码行数:36,代码来源:topcoder.py

示例11: create_model

# 需要导入模块: from keras.layers import pooling [as 别名]
# 或者: from keras.layers.pooling import MaxPooling2D [as 别名]
def create_model(input_shape, config, is_training=True):

    weight_decay = 0.001

    model = Sequential()

    model.add(Convolution2D(64, 3, 3, W_regularizer=l2(weight_decay), activation="relu", input_shape=input_shape))
    model.add(BatchNormalization())
    model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))

    model.add(Convolution2D(128, 3, 3, W_regularizer=l2(weight_decay), activation="relu"))
    model.add(BatchNormalization())
    model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))

    model.add(Convolution2D(256, 3, 3, W_regularizer=l2(weight_decay), activation="relu"))
    model.add(BatchNormalization())
    # model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))

    model.add(Convolution2D(256, 3, 3, W_regularizer=l2(weight_decay), activation="relu"))
    model.add(BatchNormalization())
    model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))

    model.add(Convolution2D(512, 3, 3, W_regularizer=l2(weight_decay), activation="relu"))
    model.add(BatchNormalization())
    # model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))

    model.add(Convolution2D(512, 3, 3, W_regularizer=l2(weight_decay), activation="relu"))
    model.add(BatchNormalization())
    model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))

    model.add(Convolution2D(512, 3, 3, W_regularizer=l2(weight_decay), activation="relu"))
    model.add(BatchNormalization())
    model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))

    model.add(Flatten())
    model.add(Dense(1024, W_regularizer=l2(weight_decay), activation="relu"))

    model.add(Dense(config["num_classes"], activation="softmax"))

    return model 
开发者ID:HPI-DeepLearning,项目名称:crnn-lid,代码行数:42,代码来源:cnn.py

示例12: create_model

# 需要导入模块: from keras.layers import pooling [as 别名]
# 或者: from keras.layers.pooling import MaxPooling2D [as 别名]
def create_model(input_shape, config, is_training=True):

    weight_decay = 0.001

    model = Sequential()

    model.add(Convolution2D(16, 7, 7, W_regularizer=l2(weight_decay), activation="relu", input_shape=input_shape))
    model.add(BatchNormalization())
    model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))

    model.add(Convolution2D(32, 5, 5, W_regularizer=l2(weight_decay), activation="relu"))
    model.add(BatchNormalization())
    model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))

    model.add(Convolution2D(64, 3, 3, W_regularizer=l2(weight_decay), activation="relu"))
    model.add(BatchNormalization())
    model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))

    model.add(Convolution2D(128, 3, 3, W_regularizer=l2(weight_decay), activation="relu"))
    model.add(BatchNormalization())
    model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))

    model.add(Convolution2D(256, 3, 3, W_regularizer=l2(weight_decay), activation="relu"))
    model.add(BatchNormalization())
    model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))

    # (bs, y, x, c) --> (bs, x, y, c)
    model.add(Permute((2, 1, 3)))

    # (bs, x, y, c) --> (bs, x, y * c)
    bs, x, y, c = model.layers[-1].output_shape
    model.add(Reshape((x, y*c)))

    model.add(Bidirectional(LSTM(512, return_sequences=False), merge_mode="concat"))
    model.add(Dense(config["num_classes"], activation="softmax"))

    return model 
开发者ID:HPI-DeepLearning,项目名称:crnn-lid,代码行数:39,代码来源:topcoder_crnn.py

示例13: conv2d_bn

# 需要导入模块: from keras.layers import pooling [as 别名]
# 或者: from keras.layers.pooling import MaxPooling2D [as 别名]
def conv2d_bn(input_layer, index_layer,
              filters=16,
              kernel_size=(3, 3),
              strides=(1, 1)):
    """Utility function to apply conv + BN.
    # Arguments
        x: input tensor.
        filters: filters in `Conv2D`.
        num_row: height of the convolution kernel.
        num_col: width of the convolution kernel.
        padding: padding mode in `Conv2D`.
        strides: strides in `Conv2D`.
        name: name of the ops; will become `name + '_conv'`
            for the convolution and `name + '_bn'` for the
            batch norm layer.
    # Returns
        Output tensor after applying `Conv2D` and `BatchNormalization`.
    """
    if K.image_data_format() == 'channels_first':
        bn_axis = 1
    else:
        bn_axis = 3
    conv = Conv2D(filters=filters,
                  kernel_size=kernel_size,
                  strides=strides,
                  padding='same',
                  use_bias=False,
                  name="conv{0}".format(index_layer))(input_layer)
    bn = BatchNormalization(axis=bn_axis, scale=False, name="bn{0}".format(index_layer))(conv)
    act = Activation('relu', name="act{0}".format(index_layer))(bn)
    pooling = MaxPooling2D(pool_size=2)(act)
    x = Dropout(0.3)(pooling)
    return x 
开发者ID:multi-commander,项目名称:Multi-Commander,代码行数:35,代码来源:network_agent.py

示例14: build_discriminator

# 需要导入模块: from keras.layers import pooling [as 别名]
# 或者: from keras.layers.pooling import MaxPooling2D [as 别名]
def build_discriminator():
    dis_model = Sequential()
    dis_model.add(
        Conv2D(128, (5, 5),
               padding='same',
               input_shape=(64, 64, 3))
    )
    dis_model.add(LeakyReLU(alpha=0.2))
    dis_model.add(MaxPooling2D(pool_size=(2, 2)))

    dis_model.add(Conv2D(256, (3, 3)))
    dis_model.add(LeakyReLU(alpha=0.2))
    dis_model.add(MaxPooling2D(pool_size=(2, 2)))

    dis_model.add(Conv2D(512, (3, 3)))
    dis_model.add(LeakyReLU(alpha=0.2))
    dis_model.add(MaxPooling2D(pool_size=(2, 2)))

    dis_model.add(Flatten())
    dis_model.add(Dense(1024))
    dis_model.add(LeakyReLU(alpha=0.2))

    dis_model.add(Dense(1))
    dis_model.add(Activation('sigmoid'))

    return dis_model 
开发者ID:PacktPublishing,项目名称:Generative-Adversarial-Networks-Projects,代码行数:28,代码来源:run.py

示例15: resnet_graph

# 需要导入模块: from keras.layers import pooling [as 别名]
# 或者: from keras.layers.pooling import MaxPooling2D [as 别名]
def resnet_graph(input_image, architecture, stage5=False):
    assert architecture in ["resnet50", "resnet101"]
    # Stage 1
    x = ZeroPadding2D((3, 3))(input_image)
    x = Conv2D(64, (7, 7), strides=(2, 2), name='conv1', use_bias=True)(x)
    x = BatchNorm(axis=3, name='bn_conv1')(x)
    x = Activation('relu')(x)
    C1 = x = MaxPooling2D((3, 3), strides=(2, 2), padding="same")(x)
    # Stage 2
    x = conv_block(x, 3, [64, 64, 256], stage=2, block='a', strides=(1, 1))
    x = identity_block(x, 3, [64, 64, 256], stage=2, block='b')
    C2 = x = identity_block(x, 3, [64, 64, 256], stage=2, block='c')
    # Stage 3
    x = conv_block(x, 3, [128, 128, 512], stage=3, block='a')
    x = identity_block(x, 3, [128, 128, 512], stage=3, block='b')
    x = identity_block(x, 3, [128, 128, 512], stage=3, block='c')
    C3 = x = identity_block(x, 3, [128, 128, 512], stage=3, block='d')
    # Stage 4
    x = conv_block(x, 3, [256, 256, 1024], stage=4, block='a')
    block_count = {"resnet50": 5, "resnet101": 22}[architecture]
    for i in range(block_count):
        x = identity_block(x, 3, [256, 256, 1024], stage=4, block=chr(98 + i))
    C4 = x
    # Stage 5
    if stage5:
        x = conv_block(x, 3, [512, 512, 2048], stage=5, block='a')
        x = identity_block(x, 3, [512, 512, 2048], stage=5, block='b')
        C5 = x = identity_block(x, 3, [512, 512, 2048], stage=5, block='c')
    else:
        C5 = None
    return [C1, C2, C3, C4, C5]


############################################################
#  Proposal Layer
############################################################ 
开发者ID:DeepinSC,项目名称:PyTorch-Luna16,代码行数:38,代码来源:MaskRCNN.py


注:本文中的keras.layers.pooling.MaxPooling2D方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。