本文整理汇总了Python中keras.layers.convolutional.MaxPooling3D方法的典型用法代码示例。如果您正苦于以下问题:Python convolutional.MaxPooling3D方法的具体用法?Python convolutional.MaxPooling3D怎么用?Python convolutional.MaxPooling3D使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类keras.layers.convolutional
的用法示例。
在下文中一共展示了convolutional.MaxPooling3D方法的9个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: cnn_3D
# 需要导入模块: from keras.layers import convolutional [as 别名]
# 或者: from keras.layers.convolutional import MaxPooling3D [as 别名]
def cnn_3D(self, input_shape, modual=''):
#建立Sequential模型
model_in = Input(input_shape)
model = Convolution3D(
filters = 6,
kernel_size = (3, 3, 3),
input_shape = input_shape,
activation='relu',
kernel_initializer='he_normal',
name = modual+'conv1'
)(model_in)# now 30x30x3x6
model = MaxPooling3D(pool_size=(2,2,1))(model)# now 15x15x3x6
model = Convolution3D(
filters = 8,
kernel_size = (4, 4, 3),
activation='relu',
kernel_initializer='he_normal',
name = modual+'conv2'
)(model)# now 12x12x1x8
model = MaxPooling3D(pool_size=(2,2,1))(model)# now 6x6x1x8
model = Flatten()(model)
model = Dropout(0.5)(model)
model_out = Dense(100, activation='relu', name = modual+'fc1')(model)
return model_in, model_out
示例2: fSPP
# 需要导入模块: from keras.layers import convolutional [as 别名]
# 或者: from keras.layers.convolutional import MaxPooling3D [as 别名]
def fSPP(inp, level=3):
inshape = inp._keras_shape[2:]
Kernel = [[0] * 3 for i in range(level)]
Stride = [[0] * 3 for i in range(level)]
SPPout = T.tensor5()
for iLevel in range(level):
Kernel[iLevel] = np.ceil(np.divide(inshape, iLevel+1, dtype = float)).astype(int)
Stride[iLevel] = np.floor(np.divide(inshape, iLevel+1, dtype = float)).astype(int)
if inshape[2]%3==2:
Kernel[2][2] = Kernel[2][2] + 1
poolLevel = MaxPooling3D(pool_size=Kernel[iLevel], strides=Stride[iLevel])(inp)
if iLevel == 0:
SPPout = Flatten()(poolLevel)
else:
poolFlat = Flatten()(poolLevel)
SPPout = concatenate([SPPout,poolFlat], axis=1)
return SPPout
# Models of FCN
示例3: InceptionBlock
# 需要导入模块: from keras.layers import convolutional [as 别名]
# 或者: from keras.layers.convolutional import MaxPooling3D [as 别名]
def InceptionBlock(inp, l1_reg=0.0, l2_reg=1e-6):
KN = fgetKernelNumber()
branch1 = Conv3D(filters=KN[0], kernel_size=(1,1,1), kernel_initializer='he_normal', weights=None,padding='same',
strides=(1,1,1),kernel_regularizer=l1_l2(l1_reg, l2_reg),activation='relu')(inp)
branch3 = Conv3D(filters=KN[0], kernel_size=(1, 1, 1), kernel_initializer='he_normal', weights=None, padding='same',
strides=(1, 1, 1), kernel_regularizer=l1_l2(l1_reg, l2_reg), activation='relu')(inp)
branch3 = Conv3D(filters=KN[2], kernel_size=(3, 3, 3), kernel_initializer='he_normal', weights=None, padding='same',
strides=(1, 1, 1), kernel_regularizer=l1_l2(l1_reg, l2_reg), activation='relu')(branch3)
branch5 = Conv3D(filters=KN[0], kernel_size=(1, 1, 1), kernel_initializer='he_normal', weights=None, padding='same',
strides=(1, 1, 1), kernel_regularizer=l1_l2(l1_reg, l2_reg), activation='relu')(inp)
branch5 = Conv3D(filters=KN[1], kernel_size=(5, 5, 5), kernel_initializer='he_normal', weights=None, padding='same',
strides=(1, 1, 1), kernel_regularizer=l1_l2(l1_reg, l2_reg), activation='relu')(branch5)
branchpool = MaxPooling3D(pool_size=(3,3,3),strides=(1,1,1),padding='same',data_format='channels_first')(inp)
branchpool = Conv3D(filters=KN[0], kernel_size=(1, 1, 1), kernel_initializer='he_normal', weights=None, padding='same',
strides=(1, 1, 1), kernel_regularizer=l1_l2(l1_reg, l2_reg), activation='relu')(branchpool)
out = concatenate([branch1, branch3, branch5, branchpool], axis=1)
return out
示例4: test_maxpooling_3d
# 需要导入模块: from keras.layers import convolutional [as 别名]
# 或者: from keras.layers.convolutional import MaxPooling3D [as 别名]
def test_maxpooling_3d():
pool_size = (3, 3, 3)
layer_test(convolutional.MaxPooling3D,
kwargs={'strides': 2,
'padding': 'valid',
'pool_size': pool_size},
input_shape=(3, 11, 12, 10, 4))
layer_test(convolutional.MaxPooling3D,
kwargs={'strides': 3,
'padding': 'valid',
'data_format': 'channels_first',
'pool_size': pool_size},
input_shape=(3, 4, 11, 12, 10))
示例5: preds3d_baseline
# 需要导入模块: from keras.layers import convolutional [as 别名]
# 或者: from keras.layers.convolutional import MaxPooling3D [as 别名]
def preds3d_baseline(width):
learning_rate = 5e-5
#optimizer = SGD(lr=learning_rate, momentum = 0.9, decay = 1e-3, nesterov = True)
optimizer = Adam(lr=learning_rate)
inputs = Input(shape=(1, 136, 168, 168))
conv1 = Convolution3D(width, 3, 3, 3, activation = 'relu', border_mode='same')(inputs)
conv1 = BatchNormalization(axis = 1)(conv1)
conv1 = Convolution3D(width*2, 3, 3, 3, activation = 'relu', border_mode='same')(conv1)
conv1 = BatchNormalization(axis = 1)(conv1)
pool1 = MaxPooling3D(pool_size=(2, 2, 2), border_mode='same')(conv1)
conv2 = Convolution3D(width*2, 3, 3, 3, activation = 'relu', border_mode='same')(pool1)
conv2 = BatchNormalization(axis = 1)(conv2)
conv2 = Convolution3D(width*4, 3, 3, 3, activation = 'relu', border_mode='same')(conv2)
conv2 = BatchNormalization(axis = 1)(conv2)
pool2 = MaxPooling3D(pool_size=(2, 2, 2), border_mode='same')(conv2)
conv3 = Convolution3D(width*4, 3, 3, 3, activation = 'relu', border_mode='same')(pool2)
conv3 = BatchNormalization(axis = 1)(conv3)
conv3 = Convolution3D(width*8, 3, 3, 3, activation = 'relu', border_mode='same')(conv3)
conv3 = BatchNormalization(axis = 1)(conv3)
pool3 = MaxPooling3D(pool_size=(2, 2, 2), border_mode='same')(conv3)
output = GlobalAveragePooling3D()(pool3)
output = Dense(2, activation='softmax', name = 'predictions')(output)
model3d = Model(inputs, output)
model3d.compile(loss='categorical_crossentropy', optimizer = optimizer, metrics = ['accuracy'])
return model3d
示例6: preds3d_globalavg
# 需要导入模块: from keras.layers import convolutional [as 别名]
# 或者: from keras.layers.convolutional import MaxPooling3D [as 别名]
def preds3d_globalavg(width):
learning_rate = 5e-5
#optimizer = SGD(lr=learning_rate, momentum = 0.9, decay = 1e-3, nesterov = True)
optimizer = Adam(lr=learning_rate)
inputs = Input(shape=(1, 136, 168, 168))
conv1 = Convolution3D(width, 3, 3, 3, activation = 'relu', border_mode='same')(inputs)
conv1 = BatchNormalization(axis = 1)(conv1)
conv1 = Convolution3D(width*2, 3, 3, 3, activation = 'relu', border_mode='same')(conv1)
conv1 = BatchNormalization(axis = 1)(conv1)
pool1 = MaxPooling3D(pool_size=(2, 2, 2), border_mode='same')(conv1)
conv2 = Convolution3D(width*2, 3, 3, 3, activation = 'relu', border_mode='same')(pool1)
conv2 = BatchNormalization(axis = 1)(conv2)
conv2 = Convolution3D(width*4, 3, 3, 3, activation = 'relu', border_mode='same')(conv2)
conv2 = BatchNormalization(axis = 1)(conv2)
pool2 = MaxPooling3D(pool_size=(2, 2, 2), border_mode='same')(conv2)
conv3 = Convolution3D(width*4, 3, 3, 3, activation = 'relu', border_mode='same')(pool2)
conv3 = BatchNormalization(axis = 1)(conv3)
conv3 = Convolution3D(width*8, 3, 3, 3, activation = 'relu', border_mode='same')(conv3)
conv3 = BatchNormalization(axis = 1)(conv3)
pool3 = MaxPooling3D(pool_size=(2, 2, 2), border_mode='same')(conv3)
conv4 = Convolution3D(width*8, 3, 3, 3, activation = 'relu', border_mode='same')(pool3)
conv4 = BatchNormalization(axis = 1)(conv4)
conv4 = Convolution3D(width*16, 3, 3, 3, activation = 'relu', border_mode='same')(conv4)
conv4 = BatchNormalization(axis = 1)(conv4)
pool4 = MaxPooling3D(pool_size=(8, 8, 8), border_mode='same')(conv4)
output = GlobalAveragePooling3D()(conv4)
output = Dense(2, activation='softmax', name = 'predictions')(output)
model3d = Model(inputs, output)
model3d.compile(loss='categorical_crossentropy', optimizer = optimizer, metrics = ['accuracy'])
return model3d
示例7: preds3d_baseline
# 需要导入模块: from keras.layers import convolutional [as 别名]
# 或者: from keras.layers.convolutional import MaxPooling3D [as 别名]
def preds3d_baseline(width):
learning_rate = 5e-5
optimizer = SGD(lr=learning_rate, momentum = 0.9, decay = 1e-3, nesterov = True)
#optimizer = Adam(lr=learning_rate)
inputs = Input(shape=(1, 136, 168, 168))
conv1 = Convolution3D(width, 3, 3, 3, activation = 'relu', border_mode='same')(inputs)
conv1 = BatchNormalization(axis = 1)(conv1)
conv1 = Convolution3D(width*2, 3, 3, 3, activation = 'relu', border_mode='same')(conv1)
conv1 = BatchNormalization(axis = 1)(conv1)
pool1 = MaxPooling3D(pool_size=(2, 2, 2), border_mode='same')(conv1)
conv2 = Convolution3D(width*2, 3, 3, 3, activation = 'relu', border_mode='same')(pool1)
conv2 = BatchNormalization(axis = 1)(conv2)
conv2 = Convolution3D(width*4, 3, 3, 3, activation = 'relu', border_mode='same')(conv2)
conv2 = BatchNormalization(axis = 1)(conv2)
pool2 = MaxPooling3D(pool_size=(2, 2, 2), border_mode='same')(conv2)
conv3 = Convolution3D(width*4, 3, 3, 3, activation = 'relu', border_mode='same')(pool2)
conv3 = BatchNormalization(axis = 1)(conv3)
conv3 = Convolution3D(width*8, 3, 3, 3, activation = 'relu', border_mode='same')(conv3)
conv3 = BatchNormalization(axis = 1)(conv3)
pool3 = MaxPooling3D(pool_size=(2, 2, 2), border_mode='same')(conv3)
output = GlobalAveragePooling3D()(pool3)
output = Dense(2, activation='softmax', name = 'predictions')(output)
model3d = Model(inputs, output)
model3d.compile(loss='categorical_crossentropy', optimizer = optimizer, metrics = ['accuracy'])
return model3d
# 1398 stage1 original examples
示例8: preds3d_dense
# 需要导入模块: from keras.layers import convolutional [as 别名]
# 或者: from keras.layers.convolutional import MaxPooling3D [as 别名]
def preds3d_dense(width):
learning_rate = 5e-5
#optimizer = SGD(lr=learning_rate, momentum = 0.9, decay = 1e-3, nesterov = True)
optimizer = Adam(lr=learning_rate)
inputs = Input(shape=(1, 136, 168, 168))
conv1 = Convolution3D(width, 3, 3, 3, activation = 'relu', border_mode='same')(inputs)
conv1 = BatchNormalization(axis = 1)(conv1)
conv1 = Convolution3D(width*2, 3, 3, 3, activation = 'relu', border_mode='same')(conv1)
conv1 = BatchNormalization(axis = 1)(conv1)
pool1 = MaxPooling3D(pool_size=(2, 2, 2), border_mode='same')(conv1)
conv2 = Convolution3D(width*2, 3, 3, 3, activation = 'relu', border_mode='same')(pool1)
conv2 = BatchNormalization(axis = 1)(conv2)
conv2 = Convolution3D(width*4, 3, 3, 3, activation = 'relu', border_mode='same')(conv2)
conv2 = BatchNormalization(axis = 1)(conv2)
pool2 = MaxPooling3D(pool_size=(2, 2, 2), border_mode='same')(conv2)
conv3 = Convolution3D(width*4, 3, 3, 3, activation = 'relu', border_mode='same')(pool2)
conv3 = BatchNormalization(axis = 1)(conv3)
conv3 = Convolution3D(width*8, 3, 3, 3, activation = 'relu', border_mode='same')(conv3)
conv3 = BatchNormalization(axis = 1)(conv3)
pool3 = MaxPooling3D(pool_size=(2, 2, 2), border_mode='same')(conv3)
conv4 = Convolution3D(width*8, 3, 3, 3, activation = 'relu', border_mode='same')(pool3)
conv4 = BatchNormalization(axis = 1)(conv4)
conv4 = Convolution3D(width*16, 3, 3, 3, activation = 'relu', border_mode='same')(conv4)
conv4 = BatchNormalization(axis = 1)(conv4)
pool4 = MaxPooling3D(pool_size=(8, 8, 8), border_mode='same')(conv4)
output = Flatten(name='flatten')(pool4)
output = Dropout(0.2)(output)
output = Dense(128)(output)
output = PReLU()(output)
output = BatchNormalization()(output)
output = Dropout(0.2)(output)
output = Dense(128)(output)
output = PReLU()(output)
output = BatchNormalization()(output)
output = Dropout(0.3)(output)
output = Dense(2, activation='softmax', name = 'predictions')(output)
model3d = Model(inputs, output)
model3d.compile(loss='categorical_crossentropy', optimizer = optimizer, metrics = ['accuracy'])
return model3d
示例9: unet_model
# 需要导入模块: from keras.layers import convolutional [as 别名]
# 或者: from keras.layers.convolutional import MaxPooling3D [as 别名]
def unet_model():
inputs = Input(shape=(1, max_slices, img_size, img_size))
conv1 = Convolution3D(width, 3, 3, 3, activation = 'relu', border_mode='same')(inputs)
conv1 = BatchNormalization(axis = 1)(conv1)
conv1 = Convolution3D(width*2, 3, 3, 3, activation = 'relu', border_mode='same')(conv1)
conv1 = BatchNormalization(axis = 1)(conv1)
pool1 = MaxPooling3D(pool_size=(2, 2, 2), strides = (2, 2, 2), border_mode='same')(conv1)
conv2 = Convolution3D(width*2, 3, 3, 3, activation = 'relu', border_mode='same')(pool1)
conv2 = BatchNormalization(axis = 1)(conv2)
conv2 = Convolution3D(width*4, 3, 3, 3, activation = 'relu', border_mode='same')(conv2)
conv2 = BatchNormalization(axis = 1)(conv2)
pool2 = MaxPooling3D(pool_size=(2, 2, 2), strides = (2, 2, 2), border_mode='same')(conv2)
conv3 = Convolution3D(width*4, 3, 3, 3, activation = 'relu', border_mode='same')(pool2)
conv3 = BatchNormalization(axis = 1)(conv3)
conv3 = Convolution3D(width*8, 3, 3, 3, activation = 'relu', border_mode='same')(conv3)
conv3 = BatchNormalization(axis = 1)(conv3)
pool3 = MaxPooling3D(pool_size=(2, 2, 2), strides = (2, 2, 2), border_mode='same')(conv3)
conv4 = Convolution3D(width*8, 3, 3, 3, activation = 'relu', border_mode='same')(pool3)
conv4 = BatchNormalization(axis = 1)(conv4)
conv4 = Convolution3D(width*8, 3, 3, 3, activation = 'relu', border_mode='same')(conv4)
conv4 = BatchNormalization(axis = 1)(conv4)
conv4 = Convolution3D(width*16, 3, 3, 3, activation = 'relu', border_mode='same')(conv4)
conv4 = BatchNormalization(axis = 1)(conv4)
up5 = merge([UpSampling3D(size=(2, 2, 2))(conv4), conv3], mode='concat', concat_axis=1)
conv5 = SpatialDropout3D(dropout_rate)(up5)
conv5 = Convolution3D(width*8, 3, 3, 3, activation = 'relu', border_mode='same')(conv5)
conv5 = Convolution3D(width*8, 3, 3, 3, activation = 'relu', border_mode='same')(conv5)
up6 = merge([UpSampling3D(size=(2, 2, 2))(conv5), conv2], mode='concat', concat_axis=1)
conv6 = SpatialDropout3D(dropout_rate)(up6)
conv6 = Convolution3D(width*4, 3, 3, 3, activation = 'relu', border_mode='same')(conv6)
conv6 = Convolution3D(width*4, 3, 3, 3, activation = 'relu', border_mode='same')(conv6)
up7 = merge([UpSampling3D(size=(2, 2, 2))(conv6), conv1], mode='concat', concat_axis=1)
conv7 = SpatialDropout3D(dropout_rate)(up7)
conv7 = Convolution3D(width*2, 3, 3, 3, activation = 'relu', border_mode='same')(conv7)
conv7 = Convolution3D(width*2, 3, 3, 3, activation = 'relu', border_mode='same')(conv7)
conv8 = Convolution3D(1, 1, 1, 1, activation='sigmoid')(conv7)
model = Model(input=inputs, output=conv8)
model.compile(optimizer=Adam(lr=1e-5),
loss=dice_coef_loss, metrics=[dice_coef])
return model