本文整理汇总了Python中keras.layers.convolutional.MaxPooling2D方法的典型用法代码示例。如果您正苦于以下问题:Python convolutional.MaxPooling2D方法的具体用法?Python convolutional.MaxPooling2D怎么用?Python convolutional.MaxPooling2D使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类keras.layers.convolutional
的用法示例。
在下文中一共展示了convolutional.MaxPooling2D方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: model_create
# 需要导入模块: from keras.layers import convolutional [as 别名]
# 或者: from keras.layers.convolutional import MaxPooling2D [as 别名]
def model_create(input_shape, num_classes):
logging.debug('input_shape {}'.format(input_shape))
model = Sequential()
model.add(Conv2D(32, (3, 3), border_mode='same', input_shape=input_shape))
model.add(Activation('relu'))
model.add(Conv2D(32, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.5))
model.add(Flatten())
model.add(Dense(128))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes))
model.add(Activation('softmax'))
# use binary_crossentropy if has just 2 prediction yes or no
model.compile(loss='categorical_crossentropy', optimizer='adadelta', metrics=['accuracy'])
return model
示例2: cnn_model
# 需要导入模块: from keras.layers import convolutional [as 别名]
# 或者: from keras.layers.convolutional import MaxPooling2D [as 别名]
def cnn_model():
num_of_classes = get_num_of_classes()
model = Sequential()
model.add(Conv2D(16, (2,2), input_shape=(image_x, image_y, 1), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2), padding='same'))
model.add(Conv2D(32, (3,3), activation='relu'))
model.add(MaxPooling2D(pool_size=(3, 3), strides=(3, 3), padding='same'))
model.add(Conv2D(64, (5,5), activation='relu'))
model.add(MaxPooling2D(pool_size=(5, 5), strides=(5, 5), padding='same'))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(num_of_classes, activation='softmax'))
sgd = optimizers.SGD(lr=1e-2)
model.compile(loss='categorical_crossentropy', optimizer=sgd, metrics=['accuracy'])
filepath="cnn_model_keras2.h5"
checkpoint1 = ModelCheckpoint(filepath, monitor='val_acc', verbose=1, save_best_only=True, mode='max')
callbacks_list = [checkpoint1]
#from keras.utils import plot_model
#plot_model(model, to_file='model.png', show_shapes=True)
return model, callbacks_list
示例3: block_reduction_a
# 需要导入模块: from keras.layers import convolutional [as 别名]
# 或者: from keras.layers.convolutional import MaxPooling2D [as 别名]
def block_reduction_a(input):
if K.image_dim_ordering() == "th":
channel_axis = 1
else:
channel_axis = -1
branch_0 = conv2d_bn(input, 384, 3, 3, subsample=(2,2), border_mode='valid')
branch_1 = conv2d_bn(input, 192, 1, 1)
branch_1 = conv2d_bn(branch_1, 224, 3, 3)
branch_1 = conv2d_bn(branch_1, 256, 3, 3, subsample=(2,2), border_mode='valid')
branch_2 = MaxPooling2D((3,3), strides=(2,2), border_mode='valid')(input)
x = merge([branch_0, branch_1, branch_2], mode='concat', concat_axis=channel_axis)
return x
示例4: block_reduction_b
# 需要导入模块: from keras.layers import convolutional [as 别名]
# 或者: from keras.layers.convolutional import MaxPooling2D [as 别名]
def block_reduction_b(input):
if K.image_dim_ordering() == "th":
channel_axis = 1
else:
channel_axis = -1
branch_0 = conv2d_bn(input, 192, 1, 1)
branch_0 = conv2d_bn(branch_0, 192, 3, 3, subsample=(2, 2), border_mode='valid')
branch_1 = conv2d_bn(input, 256, 1, 1)
branch_1 = conv2d_bn(branch_1, 256, 1, 7)
branch_1 = conv2d_bn(branch_1, 320, 7, 1)
branch_1 = conv2d_bn(branch_1, 320, 3, 3, subsample=(2,2), border_mode='valid')
branch_2 = MaxPooling2D((3, 3), strides=(2, 2), border_mode='valid')(input)
x = merge([branch_0, branch_1, branch_2], mode='concat', concat_axis=channel_axis)
return x
示例5: cnn
# 需要导入模块: from keras.layers import convolutional [as 别名]
# 或者: from keras.layers.convolutional import MaxPooling2D [as 别名]
def cnn(trn_set, tst_set):
trn_x, trn_y = trn_set
trn_y = np.squeeze(trn_y, axis=2)
tst_x, tst_y = tst_set
tst_y = np.squeeze(tst_y, axis=2)
model = Sequential()
model.add(Convolution2D(2, 5, 5, activation='sigmoid', input_shape=(1, 28, 28)))
model.add(MaxPooling2D(pool_size=(3, 3)))
model.add(Flatten())
model.add(Dense(10, activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer=SGD(lr=0.1))
return model, trn_x, trn_y, tst_x, tst_y
################################################################################
示例6: build
# 需要导入模块: from keras.layers import convolutional [as 别名]
# 或者: from keras.layers.convolutional import MaxPooling2D [as 别名]
def build(input_shape, classes):
model = Sequential()
# CONV => RELU => POOL
model.add(Conv2D(20, kernel_size=5, padding="same", input_shape=input_shape))
model.add(Activation("relu"))
model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))
# CONV => RELU => POOL
model.add(Conv2D(50, kernel_size=5, border_mode="same"))
model.add(Activation("relu"))
model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))
# Flatten层到RELU层
model.add(Flatten())
model.add(Dense(500))
model.add(Activation("relu"))
# softmax分类器
model.add(Dense(classes))
model.add(Activation("softmax"))
return model
示例7: block_reduction_a
# 需要导入模块: from keras.layers import convolutional [as 别名]
# 或者: from keras.layers.convolutional import MaxPooling2D [as 别名]
def block_reduction_a(input):
if K.image_data_format() == 'channels_first':
channel_axis = 1
else:
channel_axis = -1
branch_0 = conv2d_bn(input, 384, 3, 3, strides=(2,2), padding='valid')
branch_1 = conv2d_bn(input, 192, 1, 1)
branch_1 = conv2d_bn(branch_1, 224, 3, 3)
branch_1 = conv2d_bn(branch_1, 256, 3, 3, strides=(2,2), padding='valid')
branch_2 = MaxPooling2D((3,3), strides=(2,2), padding='valid')(input)
x = concatenate([branch_0, branch_1, branch_2], axis=channel_axis)
return x
示例8: block_reduction_b
# 需要导入模块: from keras.layers import convolutional [as 别名]
# 或者: from keras.layers.convolutional import MaxPooling2D [as 别名]
def block_reduction_b(input):
if K.image_data_format() == 'channels_first':
channel_axis = 1
else:
channel_axis = -1
branch_0 = conv2d_bn(input, 192, 1, 1)
branch_0 = conv2d_bn(branch_0, 192, 3, 3, strides=(2, 2), padding='valid')
branch_1 = conv2d_bn(input, 256, 1, 1)
branch_1 = conv2d_bn(branch_1, 256, 1, 7)
branch_1 = conv2d_bn(branch_1, 320, 7, 1)
branch_1 = conv2d_bn(branch_1, 320, 3, 3, strides=(2,2), padding='valid')
branch_2 = MaxPooling2D((3, 3), strides=(2, 2), padding='valid')(input)
x = concatenate([branch_0, branch_1, branch_2], axis=channel_axis)
return x
示例9: init_model
# 需要导入模块: from keras.layers import convolutional [as 别名]
# 或者: from keras.layers.convolutional import MaxPooling2D [as 别名]
def init_model():
"""
"""
start_time = time.time()
print 'Compiling model...'
model = Sequential()
model.add(Convolution2D(64, 3,3, border_mode='valid', input_shape=INPUT_SHAPE))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Dropout(.25))
model.add(Flatten())
model.add(Dense(10))
model.add(Activation('softmax'))
rms = RMSprop()
model.compile(loss='categorical_crossentropy', optimizer=rms,
metrics=['accuracy'])
print 'Model compiled in {0} seconds'.format(time.time() - start_time)
model.summary()
return model
示例10: Block
# 需要导入模块: from keras.layers import convolutional [as 别名]
# 或者: from keras.layers.convolutional import MaxPooling2D [as 别名]
def Block(input, num_filters, with_shortcut):
out1 = Conv2D(filters=int(num_filters / 2), kernel_size=(1, 1), kernel_initializer='he_normal', weights=None,
padding='same',
strides=(1, 1), kernel_regularizer=l2(1e-6), activation='relu')(input)
out2 = Conv2D(filters=int(num_filters), kernel_size=(3, 3), kernel_initializer='he_normal', weights=None,
padding='same',
strides=(1, 1), kernel_regularizer=l2(1e-6), activation='relu')(out1)
out3 = Conv2D(filters=int(num_filters), kernel_size=(1, 1), kernel_initializer='he_normal', weights=None,
padding='same',
strides=(1, 1), kernel_regularizer=l2(1e-6), activation='relu')(out2)
# out4 = pool2(pool_size=(3, 3), strides=(2, 2), data_format="channel_first")(out3)
if with_shortcut:
input = Conv2D(filters=num_filters, kernel_size=(3, 3), kernel_initializer='he_normal', weights=None,
padding='same', strides=(1, 1), kernel_regularizer=l2(1e-6), activation='relu')(input)
return add([input, out3])
else:
input = Conv2D(filters=num_filters, kernel_size=(1, 1), kernel_initializer='he_normal', weights=None,
padding='same', strides=(1, 1), kernel_regularizer=l2(1e-6), activation='relu')(input)
return add([input, out3])
# DenseResNet 4040
示例11: Block
# 需要导入模块: from keras.layers import convolutional [as 别名]
# 或者: from keras.layers.convolutional import MaxPooling2D [as 别名]
def Block(input,num_filters,with_shortcut):
out1 = Conv2D(filters=num_filters/2, kernel_size=(1, 1), kernel_initializer='he_normal', weights=None, padding='same',
strides=(1, 1), kernel_regularizer=l2(1e-6), activation='relu')(input)
out2 = Conv2D(filters=num_filters, kernel_size=(3, 3), kernel_initializer='he_normal', weights=None, padding='same',
strides=(1, 1), kernel_regularizer=l2(1e-6), activation='relu')(out1)
out3 = Conv2D(filters=num_filters, kernel_size=(1, 1), kernel_initializer='he_normal', weights=None, padding='same',
strides=(1, 1), kernel_regularizer=l2(1e-6), activation='relu')(out2)
# out4 = pool2(pool_size=(3, 3), strides=(2, 2), data_format="channel_first")(out3)
if with_shortcut:
input = Conv2D(filters=num_filters, kernel_size=(3, 3), kernel_initializer='he_normal', weights=None,
padding='same',strides=(1, 1), kernel_regularizer=l2(1e-6), activation='relu')(input)
return add([input,out3])
else:
input = Conv2D(filters=num_filters, kernel_size=(1, 1), kernel_initializer='he_normal', weights=None,
padding='same',strides=(1, 1), kernel_regularizer=l2(1e-6), activation='relu')(input)
return add([input,out3])
# DenseResNet 4040
示例12: build_model
# 需要导入模块: from keras.layers import convolutional [as 别名]
# 或者: from keras.layers.convolutional import MaxPooling2D [as 别名]
def build_model():
inp = Input(shape=(FRAME_H, FRAME_W, 3))
x = Conv2D(filters=8, kernel_size=(5, 5), activation='relu')(inp)
x = MaxPooling2D((2, 2))(x)
x = Conv2D(filters=16, kernel_size=(5, 5), activation='relu')(x)
x = MaxPooling2D((2, 2))(x)
x = Conv2D(filters=32, kernel_size=(5, 5), activation='relu')(x)
x = MaxPooling2D((2, 2))(x)
x = Flatten()(x)
x = Dropout(0.5)(x)
x = Dense(128, activation='relu')(x)
x = Dropout(0.5)(x)
x = Dense(1, activation='tanh')(x)
return Model(inputs=[inp], outputs=[x])
示例13: reduction_A
# 需要导入模块: from keras.layers import convolutional [as 别名]
# 或者: from keras.layers.convolutional import MaxPooling2D [as 别名]
def reduction_A(input, k=192, l=224, m=256, n=384):
if K.image_dim_ordering() == "th":
channel_axis = 1
else:
channel_axis = -1
r1 = MaxPooling2D((3,3), strides=(2,2))(input)
r2 = Convolution2D(n, 3, 3, activation='relu', subsample=(2,2))(input)
r3 = Convolution2D(k, 1, 1, activation='relu', border_mode='same')(input)
r3 = Convolution2D(l, 3, 3, activation='relu', border_mode='same')(r3)
r3 = Convolution2D(m, 3, 3, activation='relu', subsample=(2,2))(r3)
m = merge([r1, r2, r3], mode='concat', concat_axis=channel_axis)
m = BatchNormalization(axis=1)(m)
m = Activation('relu')(m)
return m
示例14: reduction_resnet_v2_B
# 需要导入模块: from keras.layers import convolutional [as 别名]
# 或者: from keras.layers.convolutional import MaxPooling2D [as 别名]
def reduction_resnet_v2_B(input):
if K.image_dim_ordering() == "th":
channel_axis = 1
else:
channel_axis = -1
r1 = MaxPooling2D((3,3), strides=(2,2), border_mode='valid')(input)
r2 = Convolution2D(256, 1, 1, activation='relu', border_mode='same')(input)
r2 = Convolution2D(384, 3, 3, activation='relu', subsample=(2,2))(r2)
r3 = Convolution2D(256, 1, 1, activation='relu', border_mode='same')(input)
r3 = Convolution2D(288, 3, 3, activation='relu', subsample=(2, 2))(r3)
r4 = Convolution2D(256, 1, 1, activation='relu', border_mode='same')(input)
r4 = Convolution2D(288, 3, 3, activation='relu', border_mode='same')(r4)
r4 = Convolution2D(320, 3, 3, activation='relu', subsample=(2, 2))(r4)
m = merge([r1, r2, r3, r4], concat_axis=channel_axis, mode='concat')
m = BatchNormalization(axis=channel_axis)(m)
m = Activation('relu')(m)
return m
示例15: cnn_model
# 需要导入模块: from keras.layers import convolutional [as 别名]
# 或者: from keras.layers.convolutional import MaxPooling2D [as 别名]
def cnn_model():
model = Sequential()
# A Convolution2D sera a nossa camada de entrada. Podemos observar que ela possui
# 32 mapas de features com tamanho de 5 × 5 e 'relu' como funcao de ativacao.
model.add(Conv2D(32, (5, 5), input_shape=(1, 28, 28), activation='relu'))
# A camada MaxPooling2D sera nossa segunda camada onde teremos um amostragem de
# dimensoes 2 × 2.
model.add(MaxPooling2D(pool_size=(2, 2)))
# Durante a regularizacao usamos o metodo de Dropout
# excluindo 30% dos neuronios na camada, diminuindo nossa chance de overfitting.
model.add(Dropout(0.3))
# Usamos a Flatten para converter nossa matriz 2D
# numa representacao a ser processada pela fully connected.
model.add(Flatten())
# Camada fully connected com 128 neuronios e funcao de ativacao 'relu'.
model.add(Dense(128, activation='relu'))
# Nossa camada de saida possui o numero de neuronios compativel com o
# numero de classes a serem classificadas, com uma funcao de ativacao
# do tipo 'softmax'.
model.add(Dense(num_classes, activation='softmax', name='preds'))
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
return model