本文整理汇总了Python中keras.layers.convolutional.MaxPooling1D方法的典型用法代码示例。如果您正苦于以下问题:Python convolutional.MaxPooling1D方法的具体用法?Python convolutional.MaxPooling1D怎么用?Python convolutional.MaxPooling1D使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类keras.layers.convolutional
的用法示例。
在下文中一共展示了convolutional.MaxPooling1D方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: create
# 需要导入模块: from keras.layers import convolutional [as 别名]
# 或者: from keras.layers.convolutional import MaxPooling1D [as 别名]
def create(self):
self.textual_embedding(self, mask_zero=False)
self.add(Convolution1D(
nb_filter=self._config.language_cnn_filters,
filter_length=self._config.language_cnn_filter_length,
border_mode='valid',
activation=self._config.language_cnn_activation,
subsample_length=1))
#self.add(MaxPooling1D(pool_length=self._config.language_max_pool_length))
self.add(self._config.recurrent_encoder(
self._config.hidden_state_dim,
return_sequences=False,
go_backwards=False))
self.deep_mlp()
self.add(Dense(self._config.output_dim))
self.add(Activation('softmax'))
示例2: cnn_model
# 需要导入模块: from keras.layers import convolutional [as 别名]
# 或者: from keras.layers.convolutional import MaxPooling1D [as 别名]
def cnn_model(input_shape, hidden = 256, targets = 1, learn_rate = 1e-4):
model = Sequential()
model.add(Convolution1D(input_shape = input_shape, nb_filter = 64, filter_length = 3, border_mode = 'same', activation = 'relu'))
model.add(MaxPooling1D(pool_length = 3))
model.add(Bidirectional(LSTM(hidden), merge_mode = 'concat'))
model.add(Activation('tanh'))
model.add(Dropout(0.5))
model.add(Dense(targets))
if multiclass:
model.add(Activation('softmax'))
model.compile(loss='categorical_crossentropy',
optimizer=Adam(lr=learn_rate, beta_1 =.5 ), metrics=['categorical_accuracy'])
else:
model.add(Activation ('sigmoid'))
model.compile(loss='binary_crossentropy',
optimizer=Adam(lr=learn_rate, beta_1 =.5 ), metrics=['accuracy'])
return (model)
示例3: hierarchical_cnn
# 需要导入模块: from keras.layers import convolutional [as 别名]
# 或者: from keras.layers.convolutional import MaxPooling1D [as 别名]
def hierarchical_cnn (input_shape, aux_shape, targets = 1, hidden = 256, multiclass = False, learn_rate=1e-4):
x = Input(shape = input_shape, name = 'x')
xx = Convolution1D(nb_filter = 64, filter_length = 3, border_mode = 'same', activation = 'relu') (x)
xx = MaxPooling1D(pool_length = 3) (xx)
xx = Bidirectional(LSTM (256, activation = 'relu'), merge_mode = 'concat') (xx)
xx = Dropout(0.5)(xx)
dx = Input(shape = aux_shape, name = 'aux')
xx = concatenate([xx, dx])
if multiclass:
y = Dense(targets, activation = 'softmax') (xx)
model = Model(inputs = [x, dx], outputs = [y])
model.compile (loss = 'categorical_crossentropy', optimizer = Adam(lr = learn_rate), metrics = ['categorical_accuracy'])
else:
y = Dense(targets, activation = 'sigmoid') (xx)
model = Model(inputs = [x, dx], outputs = [y])
model.compile (loss = 'binary_crossentropy', optimizer = Adam(lr = learn_rate), metrics = ['accuracy'])
return (model)
示例4: m_rec
# 需要导入模块: from keras.layers import convolutional [as 别名]
# 或者: from keras.layers.convolutional import MaxPooling1D [as 别名]
def m_rec(num_classes=10):
from keras.layers.recurrent import LSTM
print('Using Model LSTM 1')
m = Sequential()
m.add(Conv1D(64,
input_shape=[AUDIO_LENGTH, 1],
kernel_size=80,
strides=4,
padding='same',
kernel_initializer='glorot_uniform',
kernel_regularizer=regularizers.l2(l=0.0001)))
m.add(BatchNormalization())
m.add(Activation('relu'))
m.add(MaxPooling1D(pool_size=4, strides=None))
m.add(LSTM(32,
kernel_regularizer=regularizers.l2(l=0.0001),
return_sequences=True,
dropout=0.2))
m.add(LSTM(32,
kernel_regularizer=regularizers.l2(l=0.0001),
return_sequences=False,
dropout=0.2))
m.add(Dense(32))
m.add(Dense(num_classes, activation='softmax'))
return m
示例5: embeddingCNN
# 需要导入模块: from keras.layers import convolutional [as 别名]
# 或者: from keras.layers.convolutional import MaxPooling1D [as 别名]
def embeddingCNN(shape, clusters=2, embedLayer=200, middle = 100):
top_words = 2001
lossType = 'binary_crossentropy' if clusters == 2 else 'categorical_crossentropy'
model = Sequential()
model.add(Embedding(top_words, embedLayer, input_length=shape))
model.add(Convolution1D(nb_filter=embedLayer, filter_length=3, border_mode='same', activation='relu'))
model.add(MaxPooling1D(pool_length=2))
model.add(Flatten())
model.add(Dense(middle, activation='relu'))
model.add(Dense(clusters, activation='sigmoid'))
model.compile(loss=lossType, optimizer='adam', metrics=['accuracy'])
return model
开发者ID:WayneDW,项目名称:Sentiment-Analysis-in-Event-Driven-Stock-Price-Movement-Prediction,代码行数:14,代码来源:model_keras_cnn_rnn.py
示例6: test_maxpooling_1d
# 需要导入模块: from keras.layers import convolutional [as 别名]
# 或者: from keras.layers.convolutional import MaxPooling1D [as 别名]
def test_maxpooling_1d():
for padding in ['valid', 'same']:
for stride in [1, 2]:
layer_test(convolutional.MaxPooling1D,
kwargs={'strides': stride,
'padding': padding},
input_shape=(3, 5, 4))
示例7: model
# 需要导入模块: from keras.layers import convolutional [as 别名]
# 或者: from keras.layers.convolutional import MaxPooling1D [as 别名]
def model(X_train, X_test, y_train, y_test, maxlen, max_features):
embedding_size = 300
pool_length = 4
lstm_output_size = 100
batch_size = 200
nb_epoch = 1
model = Sequential()
model.add(Embedding(max_features, embedding_size, input_length=maxlen))
model.add(Dropout({{uniform(0, 1)}}))
# Note that we use unnamed parameters here, which is bad style, but is used here
# to demonstrate that it works. Always prefer named parameters.
model.add(Convolution1D({{choice([64, 128])}},
{{choice([6, 8])}},
border_mode='valid',
activation='relu',
subsample_length=1))
model.add(MaxPooling1D(pool_length=pool_length))
model.add(LSTM(lstm_output_size))
model.add(Dense(1))
model.add(Activation('sigmoid'))
model.compile(loss='binary_crossentropy',
optimizer='adam',
metrics=['accuracy'])
print('Train...')
model.fit(X_train, y_train, batch_size=batch_size, nb_epoch=nb_epoch,
validation_data=(X_test, y_test))
score, acc = model.evaluate(X_test, y_test, batch_size=batch_size)
print('Test score:', score)
print('Test accuracy:', acc)
return {'loss': -acc, 'status': STATUS_OK, 'model': model}
示例8: define_model
# 需要导入模块: from keras.layers import convolutional [as 别名]
# 或者: from keras.layers.convolutional import MaxPooling1D [as 别名]
def define_model(self, length, vocab_size):
embedding_size = 100
cnn_filter_size = 32
inputs1 = Input(shape=(length,))
embedding1 = Embedding(vocab_size, embedding_size)(inputs1)
conv1 = Conv1D(filters=cnn_filter_size, kernel_size=4, activation='relu')(
embedding1)
drop1 = Dropout(0.5)(conv1)
pool1 = MaxPooling1D(pool_size=2)(drop1)
flat1 = Flatten()(pool1)
inputs2 = Input(shape=(length,))
embedding2 = Embedding(vocab_size, embedding_size)(inputs2)
conv2 = Conv1D(filters=cnn_filter_size, kernel_size=6, activation='relu')(
embedding2)
drop2 = Dropout(0.5)(conv2)
pool2 = MaxPooling1D(pool_size=2)(drop2)
flat2 = Flatten()(pool2)
inputs3 = Input(shape=(length,))
embedding3 = Embedding(vocab_size, embedding_size)(inputs3)
conv3 = Conv1D(filters=cnn_filter_size, kernel_size=8, activation='relu')(
embedding3)
drop3 = Dropout(0.5)(conv3)
pool3 = MaxPooling1D(pool_size=2)(drop3)
flat3 = Flatten()(pool3)
merged = concatenate([flat1, flat2, flat3])
# interpretation
dense1 = Dense(10, activation='relu')(merged)
outputs = Dense(units=len(self.labels), activation='softmax')(dense1)
model = Model(inputs=[inputs1, inputs2, inputs3], outputs=outputs)
# compile
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
# summarize
print(model.summary())
return model
示例9: m3
# 需要导入模块: from keras.layers import convolutional [as 别名]
# 或者: from keras.layers.convolutional import MaxPooling1D [as 别名]
def m3(num_classes=10):
print('Using Model M3')
m = Sequential()
m.add(Conv1D(256,
input_shape=[AUDIO_LENGTH, 1],
kernel_size=80,
strides=4,
padding='same',
kernel_initializer='glorot_uniform',
kernel_regularizer=regularizers.l2(l=0.0001)))
m.add(BatchNormalization())
m.add(Activation('relu'))
m.add(MaxPooling1D(pool_size=4, strides=None))
m.add(Conv1D(256,
kernel_size=3,
strides=1,
padding='same',
kernel_initializer='glorot_uniform',
kernel_regularizer=regularizers.l2(l=0.0001)))
m.add(BatchNormalization())
m.add(Activation('relu'))
m.add(MaxPooling1D(pool_size=4, strides=None))
m.add(Lambda(lambda x: K.mean(x, axis=1))) # Same as GAP for 1D Conv Layer
m.add(Dense(num_classes, activation='softmax'))
return m
示例10: model_cnn
# 需要导入模块: from keras.layers import convolutional [as 别名]
# 或者: from keras.layers.convolutional import MaxPooling1D [as 别名]
def model_cnn(vocab, weights, dataPath, batchn, epoch):
global LEN
global DIM
global BATCH
testx, testy = build_dataset('%s%d'%(dataPath, 2528), vocab, weights=weights)
testx = np.array(testx, dtype=np.float64)
testy = np.array(testx, dtype=np.float64)
model = Sequential()
#model.add(Embedding(400001, 50, input_length=LEN, mask_zero=False,weights=[embedModel]))
model.add(Conv1D(input_shape=(LEN, DIM), filters=32, kernel_size=30, padding='same', activation='relu'))
model.add(MaxPooling1D(pool_size=2))
model.add(Flatten())
model.add(Dense(250, activation='softmax'))
model.add(Dense(1, activation='softmax'))
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
print(model.summary())
index = 0
while True:
data, result = build_dataset('%s%d'%(dataPath, index%2528), vocab, weights)
for i in range(1, batchn):
index += 1
newData, newResult = build_dataset('%s%d'%(dataPath, index), vocab, weights)
data.extend(newData)
result.extend(newResult)
model.fit(np.array(data, dtype=np.float64), np.array(result, dtype=np.float64), epochs=10, batch_size=BATCH, verbose=2, validation_data = (testx,testy))
model.save('hotnews_c_%d_%d.h5'%(BATCH, index))
predict = model.predict(testx)
for i in range(testy.shape[0]):
print(testy[i], predict[i])
index += 1
if index > epoch:
return model
示例11: Unet
# 需要导入模块: from keras.layers import convolutional [as 别名]
# 或者: from keras.layers.convolutional import MaxPooling1D [as 别名]
def Unet(nClasses, optimizer=None, input_length=1800, nChannels=1):
inputs = Input((input_length, nChannels))
conv1 = Conv1D(16, 32, activation='relu', padding='same', kernel_initializer='he_normal')(inputs)
conv1 = Conv1D(16, 32, activation='relu', padding='same', kernel_initializer='he_normal')(conv1)
pool1 = MaxPooling1D(pool_size=2)(conv1)
conv2 = Conv1D(32, 32, activation='relu', padding='same', kernel_initializer='he_normal')(pool1)
conv2 = Dropout(0.2)(conv2)
conv2 = Conv1D(32, 32, activation='relu', padding='same', kernel_initializer='he_normal')(conv2)
pool2 = MaxPooling1D(pool_size=2)(conv2)
conv3 = Conv1D(64, 32, activation='relu', padding='same', kernel_initializer='he_normal')(pool2)
conv3 = Conv1D(64, 32, activation='relu', padding='same', kernel_initializer='he_normal')(conv3)
pool3 = MaxPooling1D(pool_size=2)(conv3)
conv4 = Conv1D(128, 32, activation='relu', padding='same', kernel_initializer='he_normal')(pool3)
conv4 = Dropout(0.5)(conv4)
conv4 = Conv1D(128, 32, activation='relu', padding='same', kernel_initializer='he_normal')(conv4)
up1 = Conv1D(64, 2, activation='relu', padding='same', kernel_initializer='he_normal')(UpSampling1D(size=2)(conv4))
merge1 = concatenate([up1, conv3], axis=-1)
conv5 = Conv1D(64, 32, activation='relu', padding='same', kernel_initializer='he_normal')(merge1)
conv5 = Conv1D(64, 32, activation='relu', padding='same', kernel_initializer='he_normal')(conv5)
up2 = Conv1D(32, 2, activation='relu', padding='same', kernel_initializer = 'he_normal')(UpSampling1D(size=2)(conv5))
merge2 = concatenate([up2, conv2], axis=-1)
conv6 = Conv1D(32, 32, activation='relu', padding='same', kernel_initializer = 'he_normal')(merge2)
conv6 = Dropout(0.2)(conv6)
conv6 = Conv1D(32, 32, activation='relu', padding='same')(conv6)
up3 = Conv1D(16, 2, activation='relu', padding='same', kernel_initializer='he_normal')(UpSampling1D(size=2)(conv6))
merge3 = concatenate([up3, conv1], axis=-1)
conv7 = Conv1D(16, 32, activation='relu', padding='same', kernel_initializer='he_normal')(merge3)
conv7 = Conv1D(16, 32, activation='relu', padding='same', kernel_initializer='he_normal')(conv7)
conv8 = Conv1D(nClasses, 1, activation='relu', padding='same', kernel_initializer='he_normal')(conv7)
conv8 = core.Reshape((nClasses, input_length))(conv8)
conv8 = core.Permute((2, 1))(conv8)
conv9 = core.Activation('softmax')(conv8)
model = Model(inputs=inputs, outputs=conv9)
if not optimizer is None:
model.compile(loss="categorical_crossentropy", optimizer=optimizer, metrics=['accuracy'])
return model
示例12: create_neural_network_rnn
# 需要导入模块: from keras.layers import convolutional [as 别名]
# 或者: from keras.layers.convolutional import MaxPooling1D [as 别名]
def create_neural_network_rnn(self):
"""
Create the Neural Network Model
:return: Keras Modelh
"""
model = Sequential()
# we start off with an efficient embedding layer which maps
# our vocab indices into embedding_dims dimensions
model.add(Embedding(12, # Number of Features from State Space
300, # Vector Size
input_length=self.input_dim))
# we add a Convolution1D, which will learn nb_filter
# word group filters of size filter_length:
model.add(Convolution1D(nb_filter=self.nb_filter,
filter_length=self.filter_length,
border_mode='valid',
activation='relu',
subsample_length=1))
# we use standard max pooling (halving the output of the previous
# layer):
model.add(MaxPooling1D(pool_length=self.pool_length))
model.add(Dropout(self.dropout))
# We flatten the output of the conv layer,
# so that we can add a vanilla dense layer:
model.add(Flatten())
# We add a vanilla hidden layer:
model.add(Dense(self.neurons))
model.add(Dropout(self.dropout))
model.add(Activation('relu'))
# We project onto a single unit output layer, and squash it with a
# sigmoid:
model.add(Dense(len(self.actions)))
model.add(Activation('linear'))
model.compile(loss='mse',
optimizer=Adadelta(lr=0.00025))
print(model.summary())
return model
示例13: m5
# 需要导入模块: from keras.layers import convolutional [as 别名]
# 或者: from keras.layers.convolutional import MaxPooling1D [as 别名]
def m5(num_classes=10):
print('Using Model M5')
m = Sequential()
m.add(Conv1D(128,
input_shape=[AUDIO_LENGTH, 1],
kernel_size=80,
strides=4,
padding='same',
kernel_initializer='glorot_uniform',
kernel_regularizer=regularizers.l2(l=0.0001)))
m.add(BatchNormalization())
m.add(Activation('relu'))
m.add(MaxPooling1D(pool_size=4, strides=None))
m.add(Conv1D(128,
kernel_size=3,
strides=1,
padding='same',
kernel_initializer='glorot_uniform',
kernel_regularizer=regularizers.l2(l=0.0001)))
m.add(BatchNormalization())
m.add(Activation('relu'))
m.add(MaxPooling1D(pool_size=4, strides=None))
m.add(Conv1D(256,
kernel_size=3,
strides=1,
padding='same',
kernel_initializer='glorot_uniform',
kernel_regularizer=regularizers.l2(l=0.0001)))
m.add(BatchNormalization())
m.add(Activation('relu'))
m.add(MaxPooling1D(pool_size=4, strides=None))
m.add(Conv1D(512,
kernel_size=3,
strides=1,
padding='same',
kernel_initializer='glorot_uniform',
kernel_regularizer=regularizers.l2(l=0.0001)))
m.add(BatchNormalization())
m.add(Activation('relu'))
m.add(MaxPooling1D(pool_size=4, strides=None))
m.add(Lambda(lambda x: K.mean(x, axis=1))) # Same as GAP for 1D Conv Layer
m.add(Dense(num_classes, activation='softmax'))
return m
示例14: m11
# 需要导入模块: from keras.layers import convolutional [as 别名]
# 或者: from keras.layers.convolutional import MaxPooling1D [as 别名]
def m11(num_classes=10):
print('Using Model M11')
m = Sequential()
m.add(Conv1D(64,
input_shape=[AUDIO_LENGTH, 1],
kernel_size=80,
strides=4,
padding='same',
kernel_initializer='glorot_uniform',
kernel_regularizer=regularizers.l2(l=0.0001)))
m.add(BatchNormalization())
m.add(Activation('relu'))
m.add(MaxPooling1D(pool_size=4, strides=None))
for i in range(2):
m.add(Conv1D(64,
kernel_size=3,
strides=1,
padding='same',
kernel_initializer='glorot_uniform',
kernel_regularizer=regularizers.l2(l=0.0001)))
m.add(BatchNormalization())
m.add(Activation('relu'))
m.add(MaxPooling1D(pool_size=4, strides=None))
for i in range(2):
m.add(Conv1D(128,
kernel_size=3,
strides=1,
padding='same',
kernel_initializer='glorot_uniform',
kernel_regularizer=regularizers.l2(l=0.0001)))
m.add(BatchNormalization())
m.add(Activation('relu'))
m.add(MaxPooling1D(pool_size=4, strides=None))
for i in range(3):
m.add(Conv1D(256,
kernel_size=3,
strides=1,
padding='same',
kernel_initializer='glorot_uniform',
kernel_regularizer=regularizers.l2(l=0.0001)))
m.add(BatchNormalization())
m.add(Activation('relu'))
m.add(MaxPooling1D(pool_size=4, strides=None))
for i in range(2):
m.add(Conv1D(512,
kernel_size=3,
strides=1,
padding='same',
kernel_initializer='glorot_uniform',
kernel_regularizer=regularizers.l2(l=0.0001)))
m.add(BatchNormalization())
m.add(Activation('relu'))
m.add(Lambda(lambda x: K.mean(x, axis=1))) # Same as GAP for 1D Conv Layer
m.add(Dense(num_classes, activation='softmax'))
return m
示例15: m18
# 需要导入模块: from keras.layers import convolutional [as 别名]
# 或者: from keras.layers.convolutional import MaxPooling1D [as 别名]
def m18(num_classes=10):
print('Using Model M18')
m = Sequential()
m.add(Conv1D(64,
input_shape=[AUDIO_LENGTH, 1],
kernel_size=80,
strides=4,
padding='same',
kernel_initializer='glorot_uniform',
kernel_regularizer=regularizers.l2(l=0.0001)))
m.add(BatchNormalization())
m.add(Activation('relu'))
m.add(MaxPooling1D(pool_size=4, strides=None))
for i in range(4):
m.add(Conv1D(64,
kernel_size=3,
strides=1,
padding='same',
kernel_initializer='glorot_uniform',
kernel_regularizer=regularizers.l2(l=0.0001)))
m.add(BatchNormalization())
m.add(Activation('relu'))
m.add(MaxPooling1D(pool_size=4, strides=None))
for i in range(4):
m.add(Conv1D(128,
kernel_size=3,
strides=1,
padding='same',
kernel_initializer='glorot_uniform',
kernel_regularizer=regularizers.l2(l=0.0001)))
m.add(BatchNormalization())
m.add(Activation('relu'))
m.add(MaxPooling1D(pool_size=4, strides=None))
for i in range(4):
m.add(Conv1D(256,
kernel_size=3,
strides=1,
padding='same',
kernel_initializer='glorot_uniform',
kernel_regularizer=regularizers.l2(l=0.0001)))
m.add(BatchNormalization())
m.add(Activation('relu'))
m.add(MaxPooling1D(pool_size=4, strides=None))
for i in range(4):
m.add(Conv1D(512,
kernel_size=3,
strides=1,
padding='same',
kernel_initializer='glorot_uniform',
kernel_regularizer=regularizers.l2(l=0.0001)))
m.add(BatchNormalization())
m.add(Activation('relu'))
m.add(Lambda(lambda x: K.mean(x, axis=1))) # Same as GAP for 1D Conv Layer
m.add(Dense(num_classes, activation='softmax'))
return m