本文整理汇总了Python中keras.layers.convolutional.Conv1D方法的典型用法代码示例。如果您正苦于以下问题:Python convolutional.Conv1D方法的具体用法?Python convolutional.Conv1D怎么用?Python convolutional.Conv1D使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类keras.layers.convolutional
的用法示例。
在下文中一共展示了convolutional.Conv1D方法的14个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: m_rec
# 需要导入模块: from keras.layers import convolutional [as 别名]
# 或者: from keras.layers.convolutional import Conv1D [as 别名]
def m_rec(num_classes=10):
from keras.layers.recurrent import LSTM
print('Using Model LSTM 1')
m = Sequential()
m.add(Conv1D(64,
input_shape=[AUDIO_LENGTH, 1],
kernel_size=80,
strides=4,
padding='same',
kernel_initializer='glorot_uniform',
kernel_regularizer=regularizers.l2(l=0.0001)))
m.add(BatchNormalization())
m.add(Activation('relu'))
m.add(MaxPooling1D(pool_size=4, strides=None))
m.add(LSTM(32,
kernel_regularizer=regularizers.l2(l=0.0001),
return_sequences=True,
dropout=0.2))
m.add(LSTM(32,
kernel_regularizer=regularizers.l2(l=0.0001),
return_sequences=False,
dropout=0.2))
m.add(Dense(32))
m.add(Dense(num_classes, activation='softmax'))
return m
示例2: create_model
# 需要导入模块: from keras.layers import convolutional [as 别名]
# 或者: from keras.layers.convolutional import Conv1D [as 别名]
def create_model(self):
embedding_size = 100
self.model = Sequential()
self.model.add(Embedding(input_dim=self.vocab_size, input_length=self.max_len, output_dim=embedding_size))
self.model.add(SpatialDropout1D(0.2))
self.model.add(Conv1D(filters=256, kernel_size=5, padding='same', activation='relu'))
self.model.add(GlobalMaxPool1D())
self.model.add(Dense(units=len(self.labels), activation='softmax'))
self.model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
示例3: define_model
# 需要导入模块: from keras.layers import convolutional [as 别名]
# 或者: from keras.layers.convolutional import Conv1D [as 别名]
def define_model(self, length, vocab_size):
embedding_size = 100
cnn_filter_size = 32
inputs1 = Input(shape=(length,))
embedding1 = Embedding(vocab_size, embedding_size)(inputs1)
conv1 = Conv1D(filters=cnn_filter_size, kernel_size=4, activation='relu')(
embedding1)
drop1 = Dropout(0.5)(conv1)
pool1 = MaxPooling1D(pool_size=2)(drop1)
flat1 = Flatten()(pool1)
inputs2 = Input(shape=(length,))
embedding2 = Embedding(vocab_size, embedding_size)(inputs2)
conv2 = Conv1D(filters=cnn_filter_size, kernel_size=6, activation='relu')(
embedding2)
drop2 = Dropout(0.5)(conv2)
pool2 = MaxPooling1D(pool_size=2)(drop2)
flat2 = Flatten()(pool2)
inputs3 = Input(shape=(length,))
embedding3 = Embedding(vocab_size, embedding_size)(inputs3)
conv3 = Conv1D(filters=cnn_filter_size, kernel_size=8, activation='relu')(
embedding3)
drop3 = Dropout(0.5)(conv3)
pool3 = MaxPooling1D(pool_size=2)(drop3)
flat3 = Flatten()(pool3)
merged = concatenate([flat1, flat2, flat3])
# interpretation
dense1 = Dense(10, activation='relu')(merged)
outputs = Dense(units=len(self.labels), activation='softmax')(dense1)
model = Model(inputs=[inputs1, inputs2, inputs3], outputs=outputs)
# compile
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
# summarize
print(model.summary())
return model
示例4: m3
# 需要导入模块: from keras.layers import convolutional [as 别名]
# 或者: from keras.layers.convolutional import Conv1D [as 别名]
def m3(num_classes=10):
print('Using Model M3')
m = Sequential()
m.add(Conv1D(256,
input_shape=[AUDIO_LENGTH, 1],
kernel_size=80,
strides=4,
padding='same',
kernel_initializer='glorot_uniform',
kernel_regularizer=regularizers.l2(l=0.0001)))
m.add(BatchNormalization())
m.add(Activation('relu'))
m.add(MaxPooling1D(pool_size=4, strides=None))
m.add(Conv1D(256,
kernel_size=3,
strides=1,
padding='same',
kernel_initializer='glorot_uniform',
kernel_regularizer=regularizers.l2(l=0.0001)))
m.add(BatchNormalization())
m.add(Activation('relu'))
m.add(MaxPooling1D(pool_size=4, strides=None))
m.add(Lambda(lambda x: K.mean(x, axis=1))) # Same as GAP for 1D Conv Layer
m.add(Dense(num_classes, activation='softmax'))
return m
示例5: cnn_model
# 需要导入模块: from keras.layers import convolutional [as 别名]
# 或者: from keras.layers.convolutional import Conv1D [as 别名]
def cnn_model(self, params):
"""
Method builds uncompiled intent_model of shallow-and-wide CNN
Args:
params: disctionary of parameters for NN
Returns:
Uncompiled intent_model
"""
if type(self.opt['kernel_sizes_cnn']) is str:
self.opt['kernel_sizes_cnn'] = [int(x) for x in
self.opt['kernel_sizes_cnn'].split(' ')]
inp = Input(shape=(params['text_size'], params['embedding_size']))
outputs = []
for i in range(len(params['kernel_sizes_cnn'])):
output_i = Conv1D(params['filters_cnn'], kernel_size=params['kernel_sizes_cnn'][i],
activation=None,
kernel_regularizer=l2(params['coef_reg_cnn']),
padding='same')(inp)
output_i = BatchNormalization()(output_i)
output_i = Activation('relu')(output_i)
output_i = GlobalMaxPooling1D()(output_i)
outputs.append(output_i)
output = concatenate(outputs, axis=1)
output = Dropout(rate=params['dropout_rate'])(output)
output = Dense(params['dense_size'], activation=None,
kernel_regularizer=l2(params['coef_reg_den']))(output)
output = BatchNormalization()(output)
output = Activation('relu')(output)
output = Dropout(rate=params['dropout_rate'])(output)
output = Dense(self.n_classes, activation=None,
kernel_regularizer=l2(params['coef_reg_den']))(output)
output = BatchNormalization()(output)
act_output = Activation('sigmoid')(output)
model = Model(inputs=inp, outputs=act_output)
return model
示例6: model_cnn
# 需要导入模块: from keras.layers import convolutional [as 别名]
# 或者: from keras.layers.convolutional import Conv1D [as 别名]
def model_cnn(vocab, weights, dataPath, batchn, epoch):
global LEN
global DIM
global BATCH
testx, testy = build_dataset('%s%d'%(dataPath, 2528), vocab, weights=weights)
testx = np.array(testx, dtype=np.float64)
testy = np.array(testx, dtype=np.float64)
model = Sequential()
#model.add(Embedding(400001, 50, input_length=LEN, mask_zero=False,weights=[embedModel]))
model.add(Conv1D(input_shape=(LEN, DIM), filters=32, kernel_size=30, padding='same', activation='relu'))
model.add(MaxPooling1D(pool_size=2))
model.add(Flatten())
model.add(Dense(250, activation='softmax'))
model.add(Dense(1, activation='softmax'))
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
print(model.summary())
index = 0
while True:
data, result = build_dataset('%s%d'%(dataPath, index%2528), vocab, weights)
for i in range(1, batchn):
index += 1
newData, newResult = build_dataset('%s%d'%(dataPath, index), vocab, weights)
data.extend(newData)
result.extend(newResult)
model.fit(np.array(data, dtype=np.float64), np.array(result, dtype=np.float64), epochs=10, batch_size=BATCH, verbose=2, validation_data = (testx,testy))
model.save('hotnews_c_%d_%d.h5'%(BATCH, index))
predict = model.predict(testx)
for i in range(testy.shape[0]):
print(testy[i], predict[i])
index += 1
if index > epoch:
return model
示例7: Unet
# 需要导入模块: from keras.layers import convolutional [as 别名]
# 或者: from keras.layers.convolutional import Conv1D [as 别名]
def Unet(nClasses, optimizer=None, input_length=1800, nChannels=1):
inputs = Input((input_length, nChannels))
conv1 = Conv1D(16, 32, activation='relu', padding='same', kernel_initializer='he_normal')(inputs)
conv1 = Conv1D(16, 32, activation='relu', padding='same', kernel_initializer='he_normal')(conv1)
pool1 = MaxPooling1D(pool_size=2)(conv1)
conv2 = Conv1D(32, 32, activation='relu', padding='same', kernel_initializer='he_normal')(pool1)
conv2 = Dropout(0.2)(conv2)
conv2 = Conv1D(32, 32, activation='relu', padding='same', kernel_initializer='he_normal')(conv2)
pool2 = MaxPooling1D(pool_size=2)(conv2)
conv3 = Conv1D(64, 32, activation='relu', padding='same', kernel_initializer='he_normal')(pool2)
conv3 = Conv1D(64, 32, activation='relu', padding='same', kernel_initializer='he_normal')(conv3)
pool3 = MaxPooling1D(pool_size=2)(conv3)
conv4 = Conv1D(128, 32, activation='relu', padding='same', kernel_initializer='he_normal')(pool3)
conv4 = Dropout(0.5)(conv4)
conv4 = Conv1D(128, 32, activation='relu', padding='same', kernel_initializer='he_normal')(conv4)
up1 = Conv1D(64, 2, activation='relu', padding='same', kernel_initializer='he_normal')(UpSampling1D(size=2)(conv4))
merge1 = concatenate([up1, conv3], axis=-1)
conv5 = Conv1D(64, 32, activation='relu', padding='same', kernel_initializer='he_normal')(merge1)
conv5 = Conv1D(64, 32, activation='relu', padding='same', kernel_initializer='he_normal')(conv5)
up2 = Conv1D(32, 2, activation='relu', padding='same', kernel_initializer = 'he_normal')(UpSampling1D(size=2)(conv5))
merge2 = concatenate([up2, conv2], axis=-1)
conv6 = Conv1D(32, 32, activation='relu', padding='same', kernel_initializer = 'he_normal')(merge2)
conv6 = Dropout(0.2)(conv6)
conv6 = Conv1D(32, 32, activation='relu', padding='same')(conv6)
up3 = Conv1D(16, 2, activation='relu', padding='same', kernel_initializer='he_normal')(UpSampling1D(size=2)(conv6))
merge3 = concatenate([up3, conv1], axis=-1)
conv7 = Conv1D(16, 32, activation='relu', padding='same', kernel_initializer='he_normal')(merge3)
conv7 = Conv1D(16, 32, activation='relu', padding='same', kernel_initializer='he_normal')(conv7)
conv8 = Conv1D(nClasses, 1, activation='relu', padding='same', kernel_initializer='he_normal')(conv7)
conv8 = core.Reshape((nClasses, input_length))(conv8)
conv8 = core.Permute((2, 1))(conv8)
conv9 = core.Activation('softmax')(conv8)
model = Model(inputs=inputs, outputs=conv9)
if not optimizer is None:
model.compile(loss="categorical_crossentropy", optimizer=optimizer, metrics=['accuracy'])
return model
示例8: test_causal_dilated_conv
# 需要导入模块: from keras.layers import convolutional [as 别名]
# 或者: from keras.layers.convolutional import Conv1D [as 别名]
def test_causal_dilated_conv():
# Causal:
layer_test(convolutional.Conv1D,
input_data=np.reshape(np.arange(4, dtype='float32'), (1, 4, 1)),
kwargs={
'filters': 1,
'kernel_size': 2,
'dilation_rate': 1,
'padding': 'causal',
'kernel_initializer': 'ones',
'use_bias': False,
},
expected_output=[[[0], [1], [3], [5]]]
)
# Non-causal:
layer_test(convolutional.Conv1D,
input_data=np.reshape(np.arange(4, dtype='float32'), (1, 4, 1)),
kwargs={
'filters': 1,
'kernel_size': 2,
'dilation_rate': 1,
'padding': 'valid',
'kernel_initializer': 'ones',
'use_bias': False,
},
expected_output=[[[1], [3], [5]]]
)
# Causal dilated with larger kernel size:
layer_test(convolutional.Conv1D,
input_data=np.reshape(np.arange(10, dtype='float32'), (1, 10, 1)),
kwargs={
'filters': 1,
'kernel_size': 3,
'dilation_rate': 2,
'padding': 'causal',
'kernel_initializer': 'ones',
'use_bias': False,
},
expected_output=np.float32([[[0], [1], [2], [4], [6], [9], [12], [15], [18], [21]]])
)
示例9: test_conv_1d
# 需要导入模块: from keras.layers import convolutional [as 别名]
# 或者: from keras.layers.convolutional import Conv1D [as 别名]
def test_conv_1d():
batch_size = 2
steps = 8
input_dim = 2
kernel_size = 3
filters = 3
for padding in _convolution_paddings:
for strides in [1, 2]:
if padding == 'same' and strides != 1:
continue
layer_test(convolutional.Conv1D,
kwargs={'filters': filters,
'kernel_size': kernel_size,
'padding': padding,
'strides': strides},
input_shape=(batch_size, steps, input_dim))
layer_test(convolutional.Conv1D,
kwargs={'filters': filters,
'kernel_size': kernel_size,
'padding': padding,
'kernel_regularizer': 'l2',
'bias_regularizer': 'l2',
'activity_regularizer': 'l2',
'kernel_constraint': 'max_norm',
'bias_constraint': 'max_norm',
'strides': strides},
input_shape=(batch_size, steps, input_dim))
# Test dilation
layer_test(convolutional.Conv1D,
kwargs={'filters': filters,
'kernel_size': kernel_size,
'padding': padding,
'dilation_rate': 2,
'activation': None},
input_shape=(batch_size, steps, input_dim))
convolutional.Conv1D(filters=filters,
kernel_size=kernel_size,
padding=padding,
input_shape=(input_dim,))
示例10: m5
# 需要导入模块: from keras.layers import convolutional [as 别名]
# 或者: from keras.layers.convolutional import Conv1D [as 别名]
def m5(num_classes=10):
print('Using Model M5')
m = Sequential()
m.add(Conv1D(128,
input_shape=[AUDIO_LENGTH, 1],
kernel_size=80,
strides=4,
padding='same',
kernel_initializer='glorot_uniform',
kernel_regularizer=regularizers.l2(l=0.0001)))
m.add(BatchNormalization())
m.add(Activation('relu'))
m.add(MaxPooling1D(pool_size=4, strides=None))
m.add(Conv1D(128,
kernel_size=3,
strides=1,
padding='same',
kernel_initializer='glorot_uniform',
kernel_regularizer=regularizers.l2(l=0.0001)))
m.add(BatchNormalization())
m.add(Activation('relu'))
m.add(MaxPooling1D(pool_size=4, strides=None))
m.add(Conv1D(256,
kernel_size=3,
strides=1,
padding='same',
kernel_initializer='glorot_uniform',
kernel_regularizer=regularizers.l2(l=0.0001)))
m.add(BatchNormalization())
m.add(Activation('relu'))
m.add(MaxPooling1D(pool_size=4, strides=None))
m.add(Conv1D(512,
kernel_size=3,
strides=1,
padding='same',
kernel_initializer='glorot_uniform',
kernel_regularizer=regularizers.l2(l=0.0001)))
m.add(BatchNormalization())
m.add(Activation('relu'))
m.add(MaxPooling1D(pool_size=4, strides=None))
m.add(Lambda(lambda x: K.mean(x, axis=1))) # Same as GAP for 1D Conv Layer
m.add(Dense(num_classes, activation='softmax'))
return m
示例11: m11
# 需要导入模块: from keras.layers import convolutional [as 别名]
# 或者: from keras.layers.convolutional import Conv1D [as 别名]
def m11(num_classes=10):
print('Using Model M11')
m = Sequential()
m.add(Conv1D(64,
input_shape=[AUDIO_LENGTH, 1],
kernel_size=80,
strides=4,
padding='same',
kernel_initializer='glorot_uniform',
kernel_regularizer=regularizers.l2(l=0.0001)))
m.add(BatchNormalization())
m.add(Activation('relu'))
m.add(MaxPooling1D(pool_size=4, strides=None))
for i in range(2):
m.add(Conv1D(64,
kernel_size=3,
strides=1,
padding='same',
kernel_initializer='glorot_uniform',
kernel_regularizer=regularizers.l2(l=0.0001)))
m.add(BatchNormalization())
m.add(Activation('relu'))
m.add(MaxPooling1D(pool_size=4, strides=None))
for i in range(2):
m.add(Conv1D(128,
kernel_size=3,
strides=1,
padding='same',
kernel_initializer='glorot_uniform',
kernel_regularizer=regularizers.l2(l=0.0001)))
m.add(BatchNormalization())
m.add(Activation('relu'))
m.add(MaxPooling1D(pool_size=4, strides=None))
for i in range(3):
m.add(Conv1D(256,
kernel_size=3,
strides=1,
padding='same',
kernel_initializer='glorot_uniform',
kernel_regularizer=regularizers.l2(l=0.0001)))
m.add(BatchNormalization())
m.add(Activation('relu'))
m.add(MaxPooling1D(pool_size=4, strides=None))
for i in range(2):
m.add(Conv1D(512,
kernel_size=3,
strides=1,
padding='same',
kernel_initializer='glorot_uniform',
kernel_regularizer=regularizers.l2(l=0.0001)))
m.add(BatchNormalization())
m.add(Activation('relu'))
m.add(Lambda(lambda x: K.mean(x, axis=1))) # Same as GAP for 1D Conv Layer
m.add(Dense(num_classes, activation='softmax'))
return m
示例12: m18
# 需要导入模块: from keras.layers import convolutional [as 别名]
# 或者: from keras.layers.convolutional import Conv1D [as 别名]
def m18(num_classes=10):
print('Using Model M18')
m = Sequential()
m.add(Conv1D(64,
input_shape=[AUDIO_LENGTH, 1],
kernel_size=80,
strides=4,
padding='same',
kernel_initializer='glorot_uniform',
kernel_regularizer=regularizers.l2(l=0.0001)))
m.add(BatchNormalization())
m.add(Activation('relu'))
m.add(MaxPooling1D(pool_size=4, strides=None))
for i in range(4):
m.add(Conv1D(64,
kernel_size=3,
strides=1,
padding='same',
kernel_initializer='glorot_uniform',
kernel_regularizer=regularizers.l2(l=0.0001)))
m.add(BatchNormalization())
m.add(Activation('relu'))
m.add(MaxPooling1D(pool_size=4, strides=None))
for i in range(4):
m.add(Conv1D(128,
kernel_size=3,
strides=1,
padding='same',
kernel_initializer='glorot_uniform',
kernel_regularizer=regularizers.l2(l=0.0001)))
m.add(BatchNormalization())
m.add(Activation('relu'))
m.add(MaxPooling1D(pool_size=4, strides=None))
for i in range(4):
m.add(Conv1D(256,
kernel_size=3,
strides=1,
padding='same',
kernel_initializer='glorot_uniform',
kernel_regularizer=regularizers.l2(l=0.0001)))
m.add(BatchNormalization())
m.add(Activation('relu'))
m.add(MaxPooling1D(pool_size=4, strides=None))
for i in range(4):
m.add(Conv1D(512,
kernel_size=3,
strides=1,
padding='same',
kernel_initializer='glorot_uniform',
kernel_regularizer=regularizers.l2(l=0.0001)))
m.add(BatchNormalization())
m.add(Activation('relu'))
m.add(Lambda(lambda x: K.mean(x, axis=1))) # Same as GAP for 1D Conv Layer
m.add(Dense(num_classes, activation='softmax'))
return m
示例13: evaluate_conv_model
# 需要导入模块: from keras.layers import convolutional [as 别名]
# 或者: from keras.layers.convolutional import Conv1D [as 别名]
def evaluate_conv_model(dataset, num_classes, maxlen=125,embedding_dims=250,max_features=5000,nb_filter=300,filter_length=3,num_hidden=250,dropout=0.25,verbose=True,pool_length=2,with_lstm=False):
(X_train, Y_train), (X_test, Y_test) = dataset
batch_size = 32
nb_epoch = 7
if verbose:
print('Loading data...')
print(len(X_train), 'train sequences')
print(len(X_test), 'test sequences')
print('Pad sequences (samples x time)')
X_train = sequence.pad_sequences(X_train, maxlen=maxlen)
X_test = sequence.pad_sequences(X_test, maxlen=maxlen)
if verbose:
print('X_train shape:', X_train.shape)
print('X_test shape:', X_test.shape)
print('Build model...')
model = Sequential()
# we start off with an efficient embedding layer which maps
# our vocab indices into embedding_dims dimensions
model.add(Embedding(max_features, embedding_dims, input_length=maxlen))
model.add(Dropout(dropout))
# we add a Convolution1D, which will learn nb_filter
# word group filters of size filter_length:
model.add(Conv1D(activation="relu", filters=nb_filter, kernel_size=filter_length, strides=1, padding="valid"))
if pool_length:
# we use standard max pooling (halving the output of the previous layer):
model.add(MaxPooling1D(pool_size=2))
if with_lstm:
model.add(LSTM(125))
else:
# We flatten the output of the conv layer,
# so that we can add a vanilla dense layer:
model.add(Flatten())
#We add a vanilla hidden layer:
model.add(Dense(num_hidden))
model.add(Activation('relu'))
model.add(Dropout(dropout))
# We project onto a single unit output layer, and squash it with a sigmoid:
model.add(Dense(num_classes))
model.add(Activation('softmax'))
model.compile(loss='categorical_crossentropy',optimizer='adam', metrics=['accuracy'])
model.fit(X_train, Y_train, batch_size=batch_size,epochs=nb_epoch, validation_split=0.1)
score = model.evaluate(X_test, Y_test, batch_size=batch_size, verbose=1 if verbose else 0)
if verbose:
print('Test score:',score[0])
print('Test accuracy:', score[1])
predictions = model.predict_classes(X_test,verbose=1 if verbose else 0)
return predictions,score[1]
示例14: dcnn_model
# 需要导入模块: from keras.layers import convolutional [as 别名]
# 或者: from keras.layers.convolutional import Conv1D [as 别名]
def dcnn_model(self, params):
"""
Method builds uncompiled intent_model of deep CNN
Args:
params: disctionary of parameters for NN
Returns:
Uncompiled intent_model
"""
if type(self.opt['kernel_sizes_cnn']) is str:
self.opt['kernel_sizes_cnn'] = [int(x) for x in
self.opt['kernel_sizes_cnn'].split(' ')]
if type(self.opt['filters_cnn']) is str:
self.opt['filters_cnn'] = [int(x) for x in
self.opt['filters_cnn'].split(' ')]
inp = Input(shape=(params['text_size'], params['embedding_size']))
output = inp
for i in range(len(params['kernel_sizes_cnn'])):
output = Conv1D(params['filters_cnn'][i], kernel_size=params['kernel_sizes_cnn'][i],
activation=None,
kernel_regularizer=l2(params['coef_reg_cnn']),
padding='same')(output)
output = BatchNormalization()(output)
output = Activation('relu')(output)
output = MaxPooling1D()(output)
output = GlobalMaxPooling1D()(output)
output = Dropout(rate=params['dropout_rate'])(output)
output = Dense(params['dense_size'], activation=None,
kernel_regularizer=l2(params['coef_reg_den']))(output)
output = BatchNormalization()(output)
output = Activation('relu')(output)
output = Dropout(rate=params['dropout_rate'])(output)
output = Dense(self.n_classes, activation=None,
kernel_regularizer=l2(params['coef_reg_den']))(output)
output = BatchNormalization()(output)
act_output = Activation('sigmoid')(output)
model = Model(inputs=inp, outputs=act_output)
return model