本文整理汇总了Python中keras.layers.ZeroPadding2D方法的典型用法代码示例。如果您正苦于以下问题:Python layers.ZeroPadding2D方法的具体用法?Python layers.ZeroPadding2D怎么用?Python layers.ZeroPadding2D使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类keras.layers
的用法示例。
在下文中一共展示了layers.ZeroPadding2D方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _conv2d_same
# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import ZeroPadding2D [as 别名]
def _conv2d_same(x, filters, prefix, stride=1, kernel_size=3, rate=1):
# 计算padding的数量,hw是否需要收缩
if stride == 1:
return Conv2D(filters,
(kernel_size, kernel_size),
strides=(stride, stride),
padding='same', use_bias=False,
dilation_rate=(rate, rate),
name=prefix)(x)
else:
kernel_size_effective = kernel_size + (kernel_size - 1) * (rate - 1)
pad_total = kernel_size_effective - 1
pad_beg = pad_total // 2
pad_end = pad_total - pad_beg
x = ZeroPadding2D((pad_beg, pad_end))(x)
return Conv2D(filters,
(kernel_size, kernel_size),
strides=(stride, stride),
padding='valid', use_bias=False,
dilation_rate=(rate, rate),
name=prefix)(x)
示例2: _conv_block
# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import ZeroPadding2D [as 别名]
def _conv_block(inp, convs, skip=True):
x = inp
count = 0
len_convs = len(convs)
for conv in convs:
if count == (len_convs - 2) and skip:
skip_connection = x
count += 1
if conv['stride'] > 1: x = ZeroPadding2D(((1,0),(1,0)))(x) # peculiar padding as darknet prefer left and top
x = Conv2D(conv['filter'],
conv['kernel'],
strides=conv['stride'],
padding='valid' if conv['stride'] > 1 else 'same', # peculiar padding as darknet prefer left and top
name='conv_' + str(conv['layer_idx']),
use_bias=False if conv['bnorm'] else True)(x)
if conv['bnorm']: x = BatchNormalization(epsilon=0.001, name='bnorm_' + str(conv['layer_idx']))(x)
if conv['leaky']: x = LeakyReLU(alpha=0.1, name='leaky_' + str(conv['layer_idx']))(x)
return add([skip_connection, x]) if skip else x
#SPP block uses three pooling layers of sizes [5, 9, 13] with strides one and all outputs together with the input are concatenated to be fed
#to the FC block
示例3: _conv_block
# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import ZeroPadding2D [as 别名]
def _conv_block(inp, convs, do_skip=True):
x = inp
count = 0
for conv in convs:
if count == (len(convs) - 2) and do_skip:
skip_connection = x
count += 1
if conv['stride'] > 1: x = ZeroPadding2D(((1,0),(1,0)))(x) # unlike tensorflow darknet prefer left and top paddings
x = Conv2D(conv['filter'],
conv['kernel'],
strides=conv['stride'],
padding='valid' if conv['stride'] > 1 else 'same', # unlike tensorflow darknet prefer left and top paddings
name='conv_' + str(conv['layer_idx']),
use_bias=False if conv['bnorm'] else True)(x)
if conv['bnorm']: x = BatchNormalization(epsilon=0.001, name='bnorm_' + str(conv['layer_idx']))(x)
if conv['leaky']: x = LeakyReLU(alpha=0.1, name='leaky_' + str(conv['layer_idx']))(x)
return add([skip_connection, x]) if do_skip else x
示例4: build_discriminator
# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import ZeroPadding2D [as 别名]
def build_discriminator(self):
"""Discriminator network with PatchGAN."""
inp_img = Input(shape = (self.image_size, self.image_size, 3))
x = ZeroPadding2D(padding = 1)(inp_img)
x = Conv2D(filters = self.d_conv_dim, kernel_size = 4, strides = 2, padding = 'valid', use_bias = False)(x)
x = LeakyReLU(0.01)(x)
curr_dim = self.d_conv_dim
for i in range(1, self.d_repeat_num):
x = ZeroPadding2D(padding = 1)(x)
x = Conv2D(filters = curr_dim*2, kernel_size = 4, strides = 2, padding = 'valid')(x)
x = LeakyReLU(0.01)(x)
curr_dim = curr_dim * 2
kernel_size = int(self.image_size / np.power(2, self.d_repeat_num))
out_src = ZeroPadding2D(padding = 1)(x)
out_src = Conv2D(filters = 1, kernel_size = 3, strides = 1, padding = 'valid', use_bias = False)(out_src)
out_cls = Conv2D(filters = self.c_dim, kernel_size = kernel_size, strides = 1, padding = 'valid', use_bias = False)(x)
out_cls = Reshape((self.c_dim, ))(out_cls)
return Model(inp_img, [out_src, out_cls])
示例5: residual
# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import ZeroPadding2D [as 别名]
def residual(_x, out_dim, name, stride=1):
shortcut = _x
num_channels = K.int_shape(shortcut)[-1]
_x = ZeroPadding2D(padding=1, name=name + '.pad1')(_x)
_x = Conv2D(out_dim, 3, strides=stride, use_bias=False, name=name + '.conv1')(_x)
_x = BatchNormalization(epsilon=1e-5, name=name + '.bn1')(_x)
_x = Activation('relu', name=name + '.relu1')(_x)
_x = Conv2D(out_dim, 3, padding='same', use_bias=False, name=name + '.conv2')(_x)
_x = BatchNormalization(epsilon=1e-5, name=name + '.bn2')(_x)
if num_channels != out_dim or stride != 1:
shortcut = Conv2D(out_dim, 1, strides=stride, use_bias=False, name=name + '.shortcut.0')(
shortcut)
shortcut = BatchNormalization(epsilon=1e-5, name=name + '.shortcut.1')(shortcut)
_x = Add(name=name + '.add')([_x, shortcut])
_x = Activation('relu', name=name + '.relu')(_x)
return _x
示例6: conv2d_bn
# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import ZeroPadding2D [as 别名]
def conv2d_bn(x,
layer=None,
cv1_out=None,
cv1_filter=(1, 1),
cv1_strides=(1, 1),
cv2_out=None,
cv2_filter=(3, 3),
cv2_strides=(1, 1),
padding=None):
num = '' if cv2_out == None else '1'
tensor = Conv2D(cv1_out, cv1_filter, strides=cv1_strides, data_format='channels_first', name=layer+'_conv'+num)(x)
tensor = BatchNormalization(axis=1, epsilon=0.00001, name=layer+'_bn'+num)(tensor)
tensor = Activation('relu')(tensor)
if padding == None:
return tensor
tensor = ZeroPadding2D(padding=padding, data_format='channels_first')(tensor)
if cv2_out == None:
return tensor
tensor = Conv2D(cv2_out, cv2_filter, strides=cv2_strides, data_format='channels_first', name=layer+'_conv'+'2')(tensor)
tensor = BatchNormalization(axis=1, epsilon=0.00001, name=layer+'_bn'+'2')(tensor)
tensor = Activation('relu')(tensor)
return tensor
示例7: inception_block_1c
# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import ZeroPadding2D [as 别名]
def inception_block_1c(X):
X_3x3 = fr_utils.conv2d_bn(X,
layer='inception_3c_3x3',
cv1_out=128,
cv1_filter=(1, 1),
cv2_out=256,
cv2_filter=(3, 3),
cv2_strides=(2, 2),
padding=(1, 1))
X_5x5 = fr_utils.conv2d_bn(X,
layer='inception_3c_5x5',
cv1_out=32,
cv1_filter=(1, 1),
cv2_out=64,
cv2_filter=(5, 5),
cv2_strides=(2, 2),
padding=(2, 2))
X_pool = MaxPooling2D(pool_size=3, strides=2, data_format='channels_first')(X)
X_pool = ZeroPadding2D(padding=((0, 1), (0, 1)), data_format='channels_first')(X_pool)
inception = concatenate([X_3x3, X_5x5, X_pool], axis=1)
return inception
示例8: inception_block_2b
# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import ZeroPadding2D [as 别名]
def inception_block_2b(X):
#inception4e
X_3x3 = fr_utils.conv2d_bn(X,
layer='inception_4e_3x3',
cv1_out=160,
cv1_filter=(1, 1),
cv2_out=256,
cv2_filter=(3, 3),
cv2_strides=(2, 2),
padding=(1, 1))
X_5x5 = fr_utils.conv2d_bn(X,
layer='inception_4e_5x5',
cv1_out=64,
cv1_filter=(1, 1),
cv2_out=128,
cv2_filter=(5, 5),
cv2_strides=(2, 2),
padding=(2, 2))
X_pool = MaxPooling2D(pool_size=3, strides=2, data_format='channels_first')(X)
X_pool = ZeroPadding2D(padding=((0, 1), (0, 1)), data_format='channels_first')(X_pool)
inception = concatenate([X_3x3, X_5x5, X_pool], axis=1)
return inception
示例9: build_discriminator
# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import ZeroPadding2D [as 别名]
def build_discriminator(self):
model = Sequential()
model.add(Conv2D(32, kernel_size=3, strides=2, input_shape=self.img_shape, padding="same"))
model.add(LeakyReLU(alpha=0.2))
model.add(Dropout(0.25))
model.add(Conv2D(64, kernel_size=3, strides=2, padding="same"))
model.add(ZeroPadding2D(padding=((0,1),(0,1))))
model.add(LeakyReLU(alpha=0.2))
model.add(Dropout(0.25))
model.add(BatchNormalization(momentum=0.8))
model.add(Conv2D(128, kernel_size=3, strides=2, padding="same"))
model.add(LeakyReLU(alpha=0.2))
model.add(Dropout(0.25))
model.add(BatchNormalization(momentum=0.8))
model.add(Conv2D(256, kernel_size=3, strides=1, padding="same"))
model.add(LeakyReLU(alpha=0.2))
model.add(Dropout(0.25))
model.add(Flatten())
model.summary()
img = Input(shape=self.img_shape)
features = model(img)
valid = Dense(1, activation="sigmoid")(features)
label = Dense(self.num_classes+1, activation="softmax")(features)
return Model(img, [valid, label])
示例10: build_disk_and_q_net
# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import ZeroPadding2D [as 别名]
def build_disk_and_q_net(self):
img = Input(shape=self.img_shape)
# Shared layers between discriminator and recognition network
model = Sequential()
model.add(Conv2D(64, kernel_size=3, strides=2, input_shape=self.img_shape, padding="same"))
model.add(LeakyReLU(alpha=0.2))
model.add(Dropout(0.25))
model.add(Conv2D(128, kernel_size=3, strides=2, padding="same"))
model.add(ZeroPadding2D(padding=((0,1),(0,1))))
model.add(LeakyReLU(alpha=0.2))
model.add(Dropout(0.25))
model.add(BatchNormalization(momentum=0.8))
model.add(Conv2D(256, kernel_size=3, strides=2, padding="same"))
model.add(LeakyReLU(alpha=0.2))
model.add(Dropout(0.25))
model.add(BatchNormalization(momentum=0.8))
model.add(Conv2D(512, kernel_size=3, strides=2, padding="same"))
model.add(LeakyReLU(alpha=0.2))
model.add(Dropout(0.25))
model.add(BatchNormalization(momentum=0.8))
model.add(Flatten())
img_embedding = model(img)
# Discriminator
validity = Dense(1, activation='sigmoid')(img_embedding)
# Recognition
q_net = Dense(128, activation='relu')(img_embedding)
label = Dense(self.num_classes, activation='softmax')(q_net)
# Return discriminator and recognition network
return Model(img, validity), Model(img, label)
示例11: build_critic
# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import ZeroPadding2D [as 别名]
def build_critic(self):
model = Sequential()
model.add(Conv2D(16, kernel_size=3, strides=2, input_shape=self.img_shape, padding="same"))
model.add(LeakyReLU(alpha=0.2))
model.add(Dropout(0.25))
model.add(Conv2D(32, kernel_size=3, strides=2, padding="same"))
model.add(ZeroPadding2D(padding=((0,1),(0,1))))
model.add(BatchNormalization(momentum=0.8))
model.add(LeakyReLU(alpha=0.2))
model.add(Dropout(0.25))
model.add(Conv2D(64, kernel_size=3, strides=2, padding="same"))
model.add(BatchNormalization(momentum=0.8))
model.add(LeakyReLU(alpha=0.2))
model.add(Dropout(0.25))
model.add(Conv2D(128, kernel_size=3, strides=1, padding="same"))
model.add(BatchNormalization(momentum=0.8))
model.add(LeakyReLU(alpha=0.2))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(1))
model.summary()
img = Input(shape=self.img_shape)
validity = model(img)
return Model(img, validity)
示例12: build_discriminator
# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import ZeroPadding2D [as 别名]
def build_discriminator(self):
model = Sequential()
model.add(Conv2D(16, kernel_size=3, strides=2, input_shape=self.img_shape, padding="same"))
model.add(LeakyReLU(alpha=0.2))
model.add(Dropout(0.25))
model.add(Conv2D(32, kernel_size=3, strides=2, padding="same"))
model.add(ZeroPadding2D(padding=((0,1),(0,1))))
model.add(LeakyReLU(alpha=0.2))
model.add(Dropout(0.25))
model.add(BatchNormalization(momentum=0.8))
model.add(Conv2D(64, kernel_size=3, strides=2, padding="same"))
model.add(LeakyReLU(alpha=0.2))
model.add(Dropout(0.25))
model.add(BatchNormalization(momentum=0.8))
model.add(Conv2D(128, kernel_size=3, strides=1, padding="same"))
model.add(LeakyReLU(alpha=0.2))
model.add(Dropout(0.25))
model.add(Flatten())
model.summary()
img = Input(shape=self.img_shape)
# Extract feature representation
features = model(img)
# Determine validity and label of the image
validity = Dense(1, activation="sigmoid")(features)
label = Dense(self.num_classes, activation="softmax")(features)
return Model(img, [validity, label])
示例13: resnet_graph
# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import ZeroPadding2D [as 别名]
def resnet_graph(input_image, architecture, stage5=False, train_bn=True):
"""Build a ResNet graph.
architecture: Can be resnet50 or resnet101
stage5: Boolean. If False, stage5 of the network is not created
train_bn: Boolean. Train or freeze Batch Norm layers
"""
assert architecture in ["resnet50", "resnet101"]
# Stage 1
x = KL.ZeroPadding2D((3, 3))(input_image)
x = KL.Conv2D(64, (7, 7), strides=(2, 2), name='conv1', use_bias=True)(x)
x = BatchNorm(name='bn_conv1')(x, training=train_bn)
x = KL.Activation('relu')(x)
C1 = x = KL.MaxPooling2D((3, 3), strides=(2, 2), padding="same")(x)
# Stage 2
x = conv_block(x, 3, [64, 64, 256], stage=2, block='a', strides=(1, 1), train_bn=train_bn)
x = identity_block(x, 3, [64, 64, 256], stage=2, block='b', train_bn=train_bn)
C2 = x = identity_block(x, 3, [64, 64, 256], stage=2, block='c', train_bn=train_bn)
# Stage 3
x = conv_block(x, 3, [128, 128, 512], stage=3, block='a', train_bn=train_bn)
x = identity_block(x, 3, [128, 128, 512], stage=3, block='b', train_bn=train_bn)
x = identity_block(x, 3, [128, 128, 512], stage=3, block='c', train_bn=train_bn)
C3 = x = identity_block(x, 3, [128, 128, 512], stage=3, block='d', train_bn=train_bn)
# Stage 4
x = conv_block(x, 3, [256, 256, 1024], stage=4, block='a', train_bn=train_bn)
block_count = {"resnet50": 5, "resnet101": 22}[architecture]
for i in range(block_count):
x = identity_block(x, 3, [256, 256, 1024], stage=4, block=chr(98 + i), train_bn=train_bn)
C4 = x
# Stage 5
if stage5:
x = conv_block(x, 3, [512, 512, 2048], stage=5, block='a', train_bn=train_bn)
x = identity_block(x, 3, [512, 512, 2048], stage=5, block='b', train_bn=train_bn)
C5 = x = identity_block(x, 3, [512, 512, 2048], stage=5, block='c', train_bn=train_bn)
else:
C5 = None
return [C1, C2, C3, C4, C5]
############################################################
# Proposal Layer
############################################################
示例14: resblock_body
# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import ZeroPadding2D [as 别名]
def resblock_body(x, num_filters, num_blocks):
'''A series of resblocks starting with a downsampling Convolution2D'''
# Darknet uses left and top padding instead of 'same' mode
x = ZeroPadding2D(((1,0),(1,0)))(x)
x = DarknetConv2D_BN_Leaky(num_filters, (3,3), strides=(2,2))(x)
for i in range(num_blocks):
y = compose(
DarknetConv2D_BN_Leaky(num_filters//2, (1,1)),
DarknetConv2D_BN_Leaky(num_filters, (3,3)))(x)
x = Add()([x,y])
return x
示例15: SepConv_BN
# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import ZeroPadding2D [as 别名]
def SepConv_BN(x, filters, prefix, stride=1, kernel_size=3, rate=1, depth_activation=False, epsilon=1e-3):
# 计算padding的数量,hw是否需要收缩
if stride == 1:
depth_padding = 'same'
else:
kernel_size_effective = kernel_size + (kernel_size - 1) * (rate - 1)
pad_total = kernel_size_effective - 1
pad_beg = pad_total // 2
pad_end = pad_total - pad_beg
x = ZeroPadding2D((pad_beg, pad_end))(x)
depth_padding = 'valid'
# 如果需要激活函数
if not depth_activation:
x = Activation('relu')(x)
# 分离卷积,首先3x3分离卷积,再1x1卷积
# 3x3采用膨胀卷积
x = DepthwiseConv2D((kernel_size, kernel_size), strides=(stride, stride), dilation_rate=(rate, rate),
padding=depth_padding, use_bias=False, name=prefix + '_depthwise')(x)
x = BatchNormalization(name=prefix + '_depthwise_BN', epsilon=epsilon)(x)
if depth_activation:
x = Activation('relu')(x)
# 1x1卷积,进行压缩
x = Conv2D(filters, (1, 1), padding='same',
use_bias=False, name=prefix + '_pointwise')(x)
x = BatchNormalization(name=prefix + '_pointwise_BN', epsilon=epsilon)(x)
if depth_activation:
x = Activation('relu')(x)
return x