当前位置: 首页>>代码示例>>Python>>正文


Python layers.UpSampling3D方法代码示例

本文整理汇总了Python中keras.layers.UpSampling3D方法的典型用法代码示例。如果您正苦于以下问题:Python layers.UpSampling3D方法的具体用法?Python layers.UpSampling3D怎么用?Python layers.UpSampling3D使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在keras.layers的用法示例。


在下文中一共展示了layers.UpSampling3D方法的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_keras_import

# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import UpSampling3D [as 别名]
def test_keras_import(self):
        # Upsample 1D
        model = Sequential()
        model.add(UpSampling1D(size=2, input_shape=(16, 1)))
        model.build()
        self.keras_param_test(model, 0, 2)
        # Upsample 2D
        model = Sequential()
        model.add(UpSampling2D(size=(2, 2), input_shape=(16, 16, 1)))
        model.build()
        self.keras_param_test(model, 0, 3)
        # Upsample 3D
        model = Sequential()
        model.add(UpSampling3D(size=(2, 2, 2), input_shape=(16, 16, 16, 1)))
        model.build()
        self.keras_param_test(model, 0, 4)


# ********** Pooling Layers ********** 
开发者ID:Cloud-CV,项目名称:Fabrik,代码行数:21,代码来源:test_views.py

示例2: get_up_convolution

# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import UpSampling3D [as 别名]
def get_up_convolution(n_filters, pool_size, kernel_size=(2, 2, 2), strides=(2, 2, 2),
                       deconvolution=False):
    if deconvolution:
        return Deconvolution3D(filters=n_filters, kernel_size=kernel_size,
                               strides=strides)
    else:
        return UpSampling3D(size=pool_size) 
开发者ID:ellisdg,项目名称:3DUnetCNN,代码行数:9,代码来源:unet.py

示例3: nn_architecture_seg_3d

# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import UpSampling3D [as 别名]
def nn_architecture_seg_3d(input_shape, pool_size=(2, 2, 2), n_labels=1, initial_learning_rate=0.00001,
                        depth=3, n_base_filters=16, metrics=dice_coefficient, batch_normalization=True):
    inputs = Input(input_shape)
    current_layer = inputs
    levels = list()

    for layer_depth in range(depth):
        layer1 = create_convolution_block(input_layer=current_layer, n_filters=n_base_filters * (2**layer_depth),
                                          batch_normalization=batch_normalization)
        layer2 = create_convolution_block(input_layer=layer1, n_filters=n_base_filters * (2**layer_depth) * 2,
                                          batch_normalization=batch_normalization)
        if layer_depth < depth - 1:
            current_layer = MaxPooling3D(pool_size=pool_size)(layer2)
            levels.append([layer1, layer2, current_layer])
        else:
            current_layer = layer2
            levels.append([layer1, layer2])

    for layer_depth in range(depth - 2, -1, -1):
        up_convolution = UpSampling3D(size=pool_size)
        concat = concatenate([up_convolution, levels[layer_depth][1]], axis=1)
        current_layer = create_convolution_block(n_filters=levels[layer_depth][1]._keras_shape[1],
                                                 input_layer=concat, batch_normalization=batch_normalization)
        current_layer = create_convolution_block(n_filters=levels[layer_depth][1]._keras_shape[1],
                                                 input_layer=current_layer,
                                                 batch_normalization=batch_normalization)

    final_convolution = Conv3D(n_labels, (1, 1, 1))(current_layer)
    act = Activation('sigmoid')(final_convolution)
    model = Model(inputs=inputs, outputs=act)

    if not isinstance(metrics, list):
        metrics = [metrics]

    model.compile(optimizer=Adam(lr=initial_learning_rate), loss=dice_coefficient_loss, metrics=metrics)
    return model 
开发者ID:neuropoly,项目名称:spinalcordtoolbox,代码行数:38,代码来源:cnn_models_3d.py

示例4: model_simple_upsampling__reshape

# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import UpSampling3D [as 别名]
def model_simple_upsampling__reshape(img_shape, class_n=None):

    from keras.layers import Input, Dense, Convolution3D, MaxPooling3D, UpSampling3D, Reshape, Flatten
    from keras.models import Sequential, Model
    from keras.layers.core import Activation
    from aitom.classify.deep.unsupervised.autoencoder.seg_util import conv_block

    NUM_CHANNELS=1
    input_shape = (None, img_shape[0], img_shape[1], img_shape[2], NUM_CHANNELS)

    # use relu activation for hidden layer to guarantee non-negative outputs are passed to the max pooling layer. In such case, as long as the output layer is linear activation, the network can still accomodate negative image intendities, just matter of shift back using the bias term
    input_img = Input(shape=input_shape[1:])
    x = input_img

    x = conv_block(x, 32, 3, 3, 3)
    x = MaxPooling3D((2, 2, 2), border_mode='same')(x)
    x = conv_block(x, 32, 3, 3, 3)
    x = MaxPooling3D((2, 2, 2), border_mode='same')(x)

    x = conv_block(x, 32, 3, 3, 3)

    x = UpSampling3D((2, 2, 2))(x)
    x = conv_block(x, 32, 3, 3, 3)

    x = UpSampling3D((2, 2, 2))(x)
    x = conv_block(x, 32, 3, 3, 3)

    x = Convolution3D(class_n, 1, 1, 1, border_mode='same')(x)
    x = Reshape((N.prod(img_shape), class_n))(x)
    x = Activation('softmax')(x)

    model = Model(input=input_img, output=x)

    print('model layers:')
    for l in model.layers:    print (l.output_shape, l.name)

    return model 
开发者ID:xulabs,项目名称:aitom,代码行数:39,代码来源:seg_src.py

示例5: create_up_sampling_module

# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import UpSampling3D [as 别名]
def create_up_sampling_module(input_layer, n_filters, size=(2, 2, 2)):
    up_sample = UpSampling3D(size=size)(input_layer)
    convolution = create_convolution_block(up_sample, n_filters)
    return convolution 
开发者ID:ellisdg,项目名称:3DUnetCNN,代码行数:6,代码来源:isensee2017.py

示例6: test_keras_export

# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import UpSampling3D [as 别名]
def test_keras_export(self):
        tests = open(os.path.join(settings.BASE_DIR, 'tests', 'unit', 'keras_app',
                                  'keras_export_test.json'), 'r')
        response = json.load(tests)
        tests.close()
        net = yaml.safe_load(json.dumps(response['net']))
        net = {'l0': net['Input'], 'l1': net['Input2'], 'l2': net['Input4'], 'l3': net['Upsample']}
        # Conv 1D
        net['l1']['connection']['output'].append('l3')
        net['l3']['connection']['input'] = ['l1']
        net['l3']['params']['layer_type'] = '1D'
        inp = data(net['l1'], '', 'l1')['l1']
        temp = upsample(net['l3'], [inp], 'l3')
        model = Model(inp, temp['l3'])
        self.assertEqual(model.layers[1].__class__.__name__, 'UpSampling1D')
        # Conv 2D
        net['l0']['connection']['output'].append('l0')
        net['l3']['connection']['input'] = ['l0']
        net['l3']['params']['layer_type'] = '2D'
        inp = data(net['l0'], '', 'l0')['l0']
        temp = upsample(net['l3'], [inp], 'l3')
        model = Model(inp, temp['l3'])
        self.assertEqual(model.layers[1].__class__.__name__, 'UpSampling2D')
        # Conv 3D
        net['l2']['connection']['output'].append('l3')
        net['l3']['connection']['input'] = ['l2']
        net['l3']['params']['layer_type'] = '3D'
        inp = data(net['l2'], '', 'l2')['l2']
        temp = upsample(net['l3'], [inp], 'l3')
        model = Model(inp, temp['l3'])
        self.assertEqual(model.layers[1].__class__.__name__, 'UpSampling3D') 
开发者ID:Cloud-CV,项目名称:Fabrik,代码行数:33,代码来源:test_views.py

示例7: auto_classifier_model

# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import UpSampling3D [as 别名]
def auto_classifier_model(img_shape, encoding_dim=128, NUM_CHANNELS=1, num_of_class=2):

    input_shape = (None, img_shape[0], img_shape[1], img_shape[2], NUM_CHANNELS)
    mask_shape = (None, num_of_class)

    # use relu activation for hidden layer to guarantee non-negative outputs are passed to the max pooling layer. In such case, as long as the output layer is linear activation, the network can still accomodate negative image intendities, just matter of shift back using the bias term
    input_img = Input(shape=input_shape[1:])
    mask = Input(shape=mask_shape[1:])
    x = input_img

    x = conv_block(x, 32, 3, 3, 3)
    x = MaxPooling3D((2, 2, 2), padding ='same')(x)

    x = conv_block(x, 32, 3, 3, 3)
    x = MaxPooling3D((2, 2, 2), padding ='same')(x)

    encoder_conv_shape = [_.value for _ in  x.get_shape()]          # x.get_shape() returns a list of tensorflow.python.framework.tensor_shape.Dimension objects
    x = Flatten()(x)
    encoded = Dense(encoding_dim, activation='relu', activity_regularizer=regularizers.l1(10e-5))(x)
    encoder = Model(inputs=input_img, outputs=encoded)

    x = BatchNormalization()(x)
    x = Dense(encoding_dim, activation='relu', activity_regularizer=regularizers.l1(10e-5))(x)
    x = Dense(128, activation = 'relu')(x)
    x = Dense(num_of_class, activation = 'softmax')(x)
    
    prob = x
    # classifier output
    classifier = Model(inputs=input_img, outputs=prob)

    input_img_decoder = Input(shape=encoder.output_shape[1:])
    x = input_img_decoder
    x = Dense(np.prod(encoder_conv_shape[1:]), activation='relu')(x)
    x = Reshape(encoder_conv_shape[1:])(x)

    x = UpSampling3D((2, 2, 2))(x)
    x = conv_block(x, 32, 3, 3, 3)

    x = UpSampling3D((2, 2, 2))(x)
    x = conv_block(x, 32, 3, 3, 3)
    x = Convolution3D(1, (3, 3, 3), activation='linear', padding ='same')(x)

    decoded = x
    # autoencoder output
    decoder = Model(inputs=input_img_decoder, outputs=decoded)

    
    autoencoder = Sequential()
    for l in encoder.layers:    
        autoencoder.add(l)
    last = None
    for l in decoder.layers:
        last = l    
        autoencoder.add(l)

    decoded = autoencoder(input_img)


    auto_classifier = Model(inputs=input_img, outputs=[decoded, prob])
    auto_classifier.summary()
    return auto_classifier 
开发者ID:xulabs,项目名称:aitom,代码行数:63,代码来源:auto_classifier_model.py

示例8: _build

# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import UpSampling3D [as 别名]
def _build(self):
        # get parameters
        proj = self.proj_params
        proj_axis = axes_dict(self.config.axes)[proj.axis]

        # define surface projection network (3D -> 2D)
        inp = u = Input(self.config.unet_input_shape)
        def conv_layers(u):
            for _ in range(proj.n_conv_per_depth):
                u = Conv3D(proj.n_filt, proj.kern, padding='same', activation='relu')(u)
            return u
        # down
        for _ in range(proj.n_depth):
            u = conv_layers(u)
            u = MaxPooling3D(proj.pool)(u)
        # middle
        u = conv_layers(u)
        # up
        for _ in range(proj.n_depth):
            u = UpSampling3D(proj.pool)(u)
            u = conv_layers(u)
        u = Conv3D(1, proj.kern, padding='same', activation='linear')(u)
        # convert learned features along Z to surface probabilities
        # (add 1 to proj_axis because of batch dimension in tensorflow)
        u = Lambda(lambda x: softmax(x, axis=1+proj_axis))(u)
        # multiply Z probabilities with Z values in input stack
        u = Multiply()([inp, u])
        # perform surface projection by summing over weighted Z values
        u = Lambda(lambda x: K.sum(x, axis=1+proj_axis))(u)
        model_projection = Model(inp, u)

        # define denoising network (2D -> 2D)
        # (remove projected axis from input_shape)
        input_shape = list(self.config.unet_input_shape)
        del input_shape[proj_axis]
        model_denoising = nets.common_unet(
            n_dim           = self.config.n_dim-1,
            n_channel_out   = self.config.n_channel_out,
            prob_out        = self.config.probabilistic,
            residual        = self.config.unet_residual,
            n_depth         = self.config.unet_n_depth,
            kern_size       = self.config.unet_kern_size,
            n_first         = self.config.unet_n_first,
            last_activation = self.config.unet_last_activation,
        )(tuple(input_shape))

        # chain models together
        return Model(inp, model_denoising(model_projection(inp))) 
开发者ID:CSBDeep,项目名称:CSBDeep,代码行数:50,代码来源:care_projection.py


注:本文中的keras.layers.UpSampling3D方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。