本文整理汇总了Python中keras.layers.Reshape方法的典型用法代码示例。如果您正苦于以下问题:Python layers.Reshape方法的具体用法?Python layers.Reshape怎么用?Python layers.Reshape使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类keras.layers
的用法示例。
在下文中一共展示了layers.Reshape方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: build_generator
# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import Reshape [as 别名]
def build_generator(self):
model = Sequential()
model.add(Dense(128 * 7 * 7, activation="relu", input_dim=self.latent_dim))
model.add(Reshape((7, 7, 128)))
model.add(BatchNormalization(momentum=0.8))
model.add(UpSampling2D())
model.add(Conv2D(128, kernel_size=3, padding="same"))
model.add(Activation("relu"))
model.add(BatchNormalization(momentum=0.8))
model.add(UpSampling2D())
model.add(Conv2D(64, kernel_size=3, padding="same"))
model.add(Activation("relu"))
model.add(BatchNormalization(momentum=0.8))
model.add(Conv2D(1, kernel_size=3, padding="same"))
model.add(Activation("tanh"))
model.summary()
noise = Input(shape=(self.latent_dim,))
img = model(noise)
return Model(noise, img)
示例2: build_generator
# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import Reshape [as 别名]
def build_generator(self):
model = Sequential()
model.add(Dense(512, input_dim=self.latent_dim))
model.add(LeakyReLU(alpha=0.2))
model.add(BatchNormalization(momentum=0.8))
model.add(Dense(512))
model.add(LeakyReLU(alpha=0.2))
model.add(BatchNormalization(momentum=0.8))
model.add(Dense(np.prod(self.img_shape), activation='tanh'))
model.add(Reshape(self.img_shape))
model.summary()
z = Input(shape=(self.latent_dim,))
gen_img = model(z)
return Model(z, gen_img)
示例3: build_generator
# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import Reshape [as 别名]
def build_generator(self):
model = Sequential()
model.add(Dense(128 * 7 * 7, activation="relu", input_dim=self.latent_dim))
model.add(Reshape((7, 7, 128)))
model.add(BatchNormalization(momentum=0.8))
model.add(UpSampling2D())
model.add(Conv2D(128, kernel_size=3, padding="same"))
model.add(Activation("relu"))
model.add(BatchNormalization(momentum=0.8))
model.add(UpSampling2D())
model.add(Conv2D(64, kernel_size=3, padding="same"))
model.add(Activation("relu"))
model.add(BatchNormalization(momentum=0.8))
model.add(Conv2D(self.channels, kernel_size=3, padding='same'))
model.add(Activation("tanh"))
gen_input = Input(shape=(self.latent_dim,))
img = model(gen_input)
model.summary()
return Model(gen_input, img)
示例4: build_generator
# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import Reshape [as 别名]
def build_generator(self):
model = Sequential()
model.add(Dense(128 * 7 * 7, activation="relu", input_dim=self.latent_dim))
model.add(Reshape((7, 7, 128)))
model.add(UpSampling2D())
model.add(Conv2D(128, kernel_size=4, padding="same"))
model.add(BatchNormalization(momentum=0.8))
model.add(Activation("relu"))
model.add(UpSampling2D())
model.add(Conv2D(64, kernel_size=4, padding="same"))
model.add(BatchNormalization(momentum=0.8))
model.add(Activation("relu"))
model.add(Conv2D(self.channels, kernel_size=4, padding="same"))
model.add(Activation("tanh"))
model.summary()
noise = Input(shape=(self.latent_dim,))
img = model(noise)
return Model(noise, img)
示例5: build_generator
# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import Reshape [as 别名]
def build_generator(self):
model = Sequential()
model.add(Dense(256, input_dim=self.latent_dim))
model.add(LeakyReLU(alpha=0.2))
model.add(BatchNormalization(momentum=0.8))
model.add(Dense(512))
model.add(LeakyReLU(alpha=0.2))
model.add(BatchNormalization(momentum=0.8))
model.add(Dense(1024))
model.add(LeakyReLU(alpha=0.2))
model.add(BatchNormalization(momentum=0.8))
model.add(Dense(np.prod(self.img_shape), activation='tanh'))
model.add(Reshape(self.img_shape))
model.summary()
noise = Input(shape=(self.latent_dim,))
img = model(noise)
return Model(noise, img)
示例6: build_generator
# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import Reshape [as 别名]
def build_generator(self):
model = Sequential()
model.add(Dense(128 * 7 * 7, activation="relu", input_dim=self.latent_dim))
model.add(Reshape((7, 7, 128)))
model.add(UpSampling2D())
model.add(Conv2D(128, kernel_size=3, padding="same"))
model.add(BatchNormalization(momentum=0.8))
model.add(Activation("relu"))
model.add(UpSampling2D())
model.add(Conv2D(64, kernel_size=3, padding="same"))
model.add(BatchNormalization(momentum=0.8))
model.add(Activation("relu"))
model.add(Conv2D(self.channels, kernel_size=3, padding="same"))
model.add(Activation("tanh"))
model.summary()
noise = Input(shape=(self.latent_dim,))
img = model(noise)
return Model(noise, img)
示例7: duc
# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import Reshape [as 别名]
def duc(x, factor=8, output_shape=(512, 512, 1)):
if K.image_data_format() == 'channels_last':
bn_axis = 3
else:
bn_axis = 1
H, W, c, r = output_shape[0], output_shape[1], output_shape[2], factor
h = H / r
w = W / r
x = Conv2D(
c*r*r,
(3, 3),
padding='same',
name='conv_duc_%s'%factor)(x)
x = BatchNormalization(axis=bn_axis,name='bn_duc_%s'%factor)(x)
x = Activation('relu')(x)
x = Permute((3, 1, 2))(x)
x = Reshape((c, r, r, h, w))(x)
x = Permute((1, 4, 2, 5, 3))(x)
x = Reshape((c, H, W))(x)
x = Permute((2, 3, 1))(x)
return x
# interpolation
示例8: get_Shared_Model
# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import Reshape [as 别名]
def get_Shared_Model(input_dim):
sharedNet = Sequential()
sharedNet.add(Dense(128, input_shape=(input_dim,), activation='relu'))
sharedNet.add(Dropout(0.1))
sharedNet.add(Dense(128, activation='relu'))
sharedNet.add(Dropout(0.1))
sharedNet.add(Dense(128, activation='relu'))
# sharedNet.add(Dropout(0.1))
# sharedNet.add(Dense(3, activation='relu'))
# sharedNet = Sequential()
# sharedNet.add(Dense(4096, activation="tanh", kernel_regularizer=l2(2e-3)))
# sharedNet.add(Reshape(target_shape=(64, 64, 1)))
# sharedNet.add(Conv2D(filters=64, kernel_size=3, strides=(2, 2), padding="same", activation="relu", kernel_regularizer=l2(1e-3)))
# sharedNet.add(MaxPooling2D())
# sharedNet.add(Conv2D(filters=128, kernel_size=3, strides=(2, 2), padding="same", activation="relu", kernel_regularizer=l2(1e-3)))
# sharedNet.add(MaxPooling2D())
# sharedNet.add(Conv2D(filters=64, kernel_size=3, strides=(1, 1), padding="same", activation="relu", kernel_regularizer=l2(1e-3)))
# sharedNet.add(Flatten())
# sharedNet.add(Dense(1024, activation="sigmoid", kernel_regularizer=l2(1e-3)))
return sharedNet
示例9: call
# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import Reshape [as 别名]
def call(self, inputs):
def wrapper(rois, mrcnn_class, mrcnn_bbox, image_meta):
# currently supports one image per batch
b = 0
_, _, window, _ = parse_image_meta(image_meta)
detections = refine_detections(
rois[b], mrcnn_class[b], mrcnn_bbox[b], window[b], self.config)
# Pad with zeros if detections < DETECTION_MAX_INSTANCES
gap = self.config.DETECTION_MAX_INSTANCES - detections.shape[0]
assert gap >= 0
if gap > 0:
detections = np.pad(detections, [(0, gap), (0, 0)],
'constant', constant_values=0)
# Cast to float32
# TODO: track where float64 is introduced
detections = detections.astype(np.float32)
# Reshape output
# [batch, num_detections, (y1, x1, y2, x2, class_score)] in pixels
return np.reshape(detections,
[1, self.config.DETECTION_MAX_INSTANCES, 6])
# Return wrapped function
return tf.py_func(wrapper, inputs, tf.float32)
示例10: model
# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import Reshape [as 别名]
def model(self, block_starting_size=128,num_blocks=4):
model = Sequential()
block_size = block_starting_size
model.add(Dense(block_size, input_shape=(self.LATENT_SPACE_SIZE,)))
model.add(LeakyReLU(alpha=0.2))
model.add(BatchNormalization(momentum=0.8))
for i in range(num_blocks-1):
block_size = block_size * 2
model.add(Dense(block_size))
model.add(LeakyReLU(alpha=0.2))
model.add(BatchNormalization(momentum=0.8))
model.add(Dense(self.W * self.H * self.C, activation='tanh'))
model.add(Reshape((self.W, self.H, self.C)))
return model
示例11: dc_model
# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import Reshape [as 别名]
def dc_model(self):
model = Sequential()
model.add(Dense(256*8*8,activation=LeakyReLU(0.2), input_dim=self.LATENT_SPACE_SIZE))
model.add(BatchNormalization())
model.add(Reshape((8, 8, 256)))
model.add(UpSampling2D())
model.add(Convolution2D(128, 5, 5, border_mode='same',activation=LeakyReLU(0.2)))
model.add(BatchNormalization())
model.add(UpSampling2D())
model.add(Convolution2D(64, 5, 5, border_mode='same',activation=LeakyReLU(0.2)))
model.add(BatchNormalization())
model.add(UpSampling2D())
model.add(Convolution2D(self.C, 5, 5, border_mode='same', activation='tanh'))
return model
示例12: call
# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import Reshape [as 别名]
def call(self, inputs):
def wrapper(rois, mrcnn_class, mrcnn_bbox, image_meta):
detections_batch = []
for b in range(self.config.BATCH_SIZE):
_, _, window, _ = parse_image_meta(image_meta)
detections = refine_detections(
rois[b], mrcnn_class[b], mrcnn_bbox[b], window[b], self.config)
# Pad with zeros if detections < DETECTION_MAX_INSTANCES
gap = self.config.DETECTION_MAX_INSTANCES - detections.shape[0]
assert gap >= 0
if gap > 0:
detections = np.pad(
detections, [(0, gap), (0, 0)], 'constant', constant_values=0)
detections_batch.append(detections)
# Stack detections and cast to float32
# TODO: track where float64 is introduced
detections_batch = np.array(detections_batch).astype(np.float32)
# Reshape output
# [batch, num_detections, (y1, x1, y2, x2, class_score)] in pixels
return np.reshape(detections_batch, [self.config.BATCH_SIZE, self.config.DETECTION_MAX_INSTANCES, 6])
# Return wrapped function
return tf.py_func(wrapper, inputs, tf.float32)
示例13: build_discriminator
# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import Reshape [as 别名]
def build_discriminator(self):
"""Discriminator network with PatchGAN."""
inp_img = Input(shape = (self.image_size, self.image_size, 3))
x = ZeroPadding2D(padding = 1)(inp_img)
x = Conv2D(filters = self.d_conv_dim, kernel_size = 4, strides = 2, padding = 'valid', use_bias = False)(x)
x = LeakyReLU(0.01)(x)
curr_dim = self.d_conv_dim
for i in range(1, self.d_repeat_num):
x = ZeroPadding2D(padding = 1)(x)
x = Conv2D(filters = curr_dim*2, kernel_size = 4, strides = 2, padding = 'valid')(x)
x = LeakyReLU(0.01)(x)
curr_dim = curr_dim * 2
kernel_size = int(self.image_size / np.power(2, self.d_repeat_num))
out_src = ZeroPadding2D(padding = 1)(x)
out_src = Conv2D(filters = 1, kernel_size = 3, strides = 1, padding = 'valid', use_bias = False)(out_src)
out_cls = Conv2D(filters = self.c_dim, kernel_size = kernel_size, strides = 1, padding = 'valid', use_bias = False)(x)
out_cls = Reshape((self.c_dim, ))(out_cls)
return Model(inp_img, [out_src, out_cls])
示例14: ssr_F_model_build
# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import Reshape [as 别名]
def ssr_F_model_build(self, feat_dim, name_F):
input_s1_pre = Input((feat_dim,))
input_s2_pre = Input((feat_dim,))
input_s3_pre = Input((feat_dim,))
def _process_input(stage_index, stage_num, num_classes, input_s_pre):
feat_delta_s = FeatSliceLayer(0,4)(input_s_pre)
delta_s = Dense(num_classes,activation='tanh',name=f'delta_s{stage_index}')(feat_delta_s)
feat_local_s = FeatSliceLayer(4,8)(input_s_pre)
local_s = Dense(units=num_classes, activation='tanh', name=f'local_delta_stage{stage_index}')(feat_local_s)
feat_pred_s = FeatSliceLayer(8,16)(input_s_pre)
feat_pred_s = Dense(stage_num*num_classes,activation='relu')(feat_pred_s)
pred_s = Reshape((num_classes,stage_num))(feat_pred_s)
return delta_s, local_s, pred_s
delta_s1, local_s1, pred_s1 = _process_input(1, self.stage_num[0], self.num_classes, input_s1_pre)
delta_s2, local_s2, pred_s2 = _process_input(2, self.stage_num[1], self.num_classes, input_s2_pre)
delta_s3, local_s3, pred_s3 = _process_input(3, self.stage_num[2], self.num_classes, input_s3_pre)
return Model(inputs=[input_s1_pre,input_s2_pre,input_s3_pre],outputs=[pred_s1,pred_s2,pred_s3,delta_s1,delta_s2,delta_s3,local_s1,local_s2,local_s3], name=name_F)
示例15: ssr_FC_model_build
# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import Reshape [as 别名]
def ssr_FC_model_build(self, feat_dim, name_F):
input_s1_pre = Input((feat_dim,))
input_s2_pre = Input((feat_dim,))
input_s3_pre = Input((feat_dim,))
def _process_input(stage_index, stage_num, num_classes, input_s_pre):
feat_delta_s = Dense(2*num_classes,activation='tanh')(input_s_pre)
delta_s = Dense(num_classes,activation='tanh',name=f'delta_s{stage_index}')(feat_delta_s)
feat_local_s = Dense(2*num_classes,activation='tanh')(input_s_pre)
local_s = Dense(units=num_classes, activation='tanh', name=f'local_delta_stage{stage_index}')(feat_local_s)
feat_pred_s = Dense(stage_num*num_classes,activation='relu')(input_s_pre)
pred_s = Reshape((num_classes,stage_num))(feat_pred_s)
return delta_s, local_s, pred_s
delta_s1, local_s1, pred_s1 = _process_input(1, self.stage_num[0], self.num_classes, input_s1_pre)
delta_s2, local_s2, pred_s2 = _process_input(2, self.stage_num[1], self.num_classes, input_s2_pre)
delta_s3, local_s3, pred_s3 = _process_input(3, self.stage_num[2], self.num_classes, input_s3_pre)
return Model(inputs=[input_s1_pre,input_s2_pre,input_s3_pre],outputs=[pred_s1,pred_s2,pred_s3,delta_s1,delta_s2,delta_s3,local_s1,local_s2,local_s3], name=name_F)