当前位置: 首页>>代码示例>>Python>>正文


Python layers.MaxPooling3D方法代码示例

本文整理汇总了Python中keras.layers.MaxPooling3D方法的典型用法代码示例。如果您正苦于以下问题:Python layers.MaxPooling3D方法的具体用法?Python layers.MaxPooling3D怎么用?Python layers.MaxPooling3D使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在keras.layers的用法示例。


在下文中一共展示了layers.MaxPooling3D方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: get_liveness_model

# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import MaxPooling3D [as 别名]
def get_liveness_model():

    model = Sequential()
    model.add(Conv3D(32, kernel_size=(3, 3, 3),
                    activation='relu',
                    input_shape=(24,100,100,1)))
    model.add(Conv3D(64, (3, 3, 3), activation='relu'))
    model.add(MaxPooling3D(pool_size=(2, 2, 2)))
    model.add(Conv3D(64, (3, 3, 3), activation='relu'))
    model.add(MaxPooling3D(pool_size=(2, 2, 2)))
    model.add(Conv3D(64, (3, 3, 3), activation='relu'))
    model.add(MaxPooling3D(pool_size=(2, 2, 2)))
    model.add(Dropout(0.25))
    model.add(Flatten())
    model.add(Dense(128, activation='relu'))
    model.add(Dropout(0.5))
    model.add(Dense(2, activation='softmax'))

    return model 
开发者ID:AhmetHamzaEmra,项目名称:Intelegent_Lock,代码行数:21,代码来源:livenessmodel.py

示例2: timeception_layers

# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import MaxPooling3D [as 别名]
def timeception_layers(tensor, n_layers=4, n_groups=8, is_dilated=True):
    input_shape = K.int_shape(tensor)
    assert len(input_shape) == 5

    expansion_factor = 1.25
    _, n_timesteps, side_dim, side_dim, n_channels_in = input_shape

    # how many layers of timeception
    for i in range(n_layers):
        layer_num = i + 1

        # get details about grouping
        n_channels_per_branch, n_channels_out = __get_n_channels_per_branch(n_groups, expansion_factor, n_channels_in)

        # temporal conv per group
        tensor = __grouped_convolutions(tensor, n_groups, n_channels_per_branch, is_dilated, layer_num)

        # downsample over time
        tensor = MaxPooling3D(pool_size=(2, 1, 1), name='maxpool_tc%d' % (layer_num))(tensor)
        n_channels_in = n_channels_out

    return tensor 
开发者ID:CMU-CREATE-Lab,项目名称:deep-smoke-machine,代码行数:24,代码来源:timeception.py

示例3: __define_timeception_layers

# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import MaxPooling3D [as 别名]
def __define_timeception_layers(self, n_channels_in, n_layers, n_groups, expansion_factor, is_dilated):
        """
        Define layers inside the timeception layers.
        """

        # how many layers of timeception
        for i in range(n_layers):
            layer_num = i + 1

            # get details about grouping
            n_channels_per_branch, n_channels_out = self.__get_n_channels_per_branch(n_groups, expansion_factor, n_channels_in)

            # temporal conv per group
            self.__define_grouped_convolutions(n_channels_in, n_groups, n_channels_per_branch, is_dilated, layer_num)

            # downsample over time
            layer_name = 'maxpool_tc%d' % (layer_num)
            layer = MaxPooling3D(pool_size=(2, 1, 1), name=layer_name)
            setattr(self, layer_name, layer)

            n_channels_in = n_channels_out 
开发者ID:CMU-CREATE-Lab,项目名称:deep-smoke-machine,代码行数:23,代码来源:timeception.py

示例4: get_model_compiled

# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import MaxPooling3D [as 别名]
def get_model_compiled(shapeinput, num_class, w_decay=0, lr=1e-3):
    clf = Sequential()
    clf.add(Conv3D(32, kernel_size=(5, 5, 24), input_shape=shapeinput))
    clf.add(BatchNormalization())
    clf.add(Activation('relu'))
    clf.add(Conv3D(64, (5, 5, 16)))
    clf.add(BatchNormalization())
    clf.add(Activation('relu'))
    clf.add(MaxPooling3D(pool_size=(2, 2, 1)))
    clf.add(Flatten())
    clf.add(Dense(300, kernel_regularizer=regularizers.l2(w_decay)))
    clf.add(BatchNormalization())
    clf.add(Activation('relu'))
    clf.add(Dense(num_class, activation='softmax'))
    clf.compile(loss=categorical_crossentropy, optimizer=Adam(lr=lr), metrics=['accuracy'])
    return clf 
开发者ID:mhaut,项目名称:hyperspectral_deeplearning_review,代码行数:18,代码来源:cnn3d.py

示例5: dsrff3D

# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import MaxPooling3D [as 别名]
def dsrff3D(image_size, num_labels):
    num_channels=1
    inputs = Input(shape = (image_size, image_size, image_size, num_channels))

    # modified VGG19 architecture
    bn_axis = 3
    m = Convolution3D(32, 3, 3, 3, activation='relu', border_mode='same')(inputs)    
    m = Convolution3D(32, 3, 3, 3, activation='relu', border_mode='same')(m)
    m = MaxPooling3D(pool_size=(2, 2, 2), strides=(2, 2, 2))(m)

    m = Convolution3D(64, 3, 3, 3, activation='relu', border_mode='same')(m)    
    m = Convolution3D(64, 3, 3, 3, activation='relu', border_mode='same')(m)
    m = MaxPooling3D(pool_size=(2, 2, 2), strides=(2, 2, 2))(m)

    m = Flatten(name='flatten')(m)
    m = Dense(512, activation='relu', name='fc1')(m)
    m = Dense(512, activation='relu', name='fc2')(m)
    m = Dense(num_labels, activation='softmax')(m)

    mod = KM.Model(inputs=inputs, outputs=m)

    return mod 
开发者ID:xulabs,项目名称:aitom,代码行数:24,代码来源:subdivide.py

示例6: __temporal_convolutional_block

# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import MaxPooling3D [as 别名]
def __temporal_convolutional_block(tensor, n_channels_per_branch, kernel_sizes, dilation_rates, layer_num, group_num):
    """
    Define 5 branches of convolutions that operate of channels of each group.
    """

    # branch 1: dimension reduction only and no temporal conv
    t_1 = Conv3D(n_channels_per_branch, kernel_size=(1, 1, 1), padding='same', name='conv_b1_g%d_tc%d' % (group_num, layer_num))(tensor)
    t_1 = BatchNormalization(name='bn_b1_g%d_tc%d' % (group_num, layer_num))(t_1)

    # branch 2: dimension reduction followed by depth-wise temp conv (kernel-size 3)
    t_2 = Conv3D(n_channels_per_branch, kernel_size=(1, 1, 1), padding='same', name='conv_b2_g%d_tc%d' % (group_num, layer_num))(tensor)
    t_2 = DepthwiseConv1DLayer(kernel_sizes[0], dilation_rates[0], padding='same', name='convdw_b2_g%d_tc%d' % (group_num, layer_num))(t_2)
    t_2 = BatchNormalization(name='bn_b2_g%d_tc%d' % (group_num, layer_num))(t_2)

    # branch 3: dimension reduction followed by depth-wise temp conv (kernel-size 5)
    t_3 = Conv3D(n_channels_per_branch, kernel_size=(1, 1, 1), padding='same', name='conv_b3_g%d_tc%d' % (group_num, layer_num))(tensor)
    t_3 = DepthwiseConv1DLayer(kernel_sizes[1], dilation_rates[1], padding='same', name='convdw_b3_g%d_tc%d' % (group_num, layer_num))(t_3)
    t_3 = BatchNormalization(name='bn_b3_g%d_tc%d' % (group_num, layer_num))(t_3)

    # branch 4: dimension reduction followed by depth-wise temp conv (kernel-size 7)
    t_4 = Conv3D(n_channels_per_branch, kernel_size=(1, 1, 1), padding='same', name='conv_b4_g%d_tc%d' % (group_num, layer_num))(tensor)
    t_4 = DepthwiseConv1DLayer(kernel_sizes[2], dilation_rates[2], padding='same', name='convdw_b4_g%d_tc%d' % (group_num, layer_num))(t_4)
    t_4 = BatchNormalization(name='bn_b4_g%d_tc%d' % (group_num, layer_num))(t_4)

    # branch 5: dimension reduction followed by temporal max pooling
    t_5 = Conv3D(n_channels_per_branch, kernel_size=(1, 1, 1), padding='same', name='conv_b5_g%d_tc%d' % (group_num, layer_num))(tensor)
    t_5 = MaxPooling3D(pool_size=(2, 1, 1), strides=(1, 1, 1), padding='same', name='maxpool_b5_g%d_tc%d' % (group_num, layer_num))(t_5)
    t_5 = BatchNormalization(name='bn_b5_g%d_tc%d' % (group_num, layer_num))(t_5)

    # concatenate channels of branches
    tensor = Concatenate(axis=4, name='concat_g%d_tc%d' % (group_num, layer_num))([t_1, t_2, t_3, t_4, t_5])

    return tensor 
开发者ID:CMU-CREATE-Lab,项目名称:deep-smoke-machine,代码行数:35,代码来源:timeception.py

示例7: contracting_layer

# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import MaxPooling3D [as 别名]
def contracting_layer(input, neurons):
    conv1 = Conv3D(neurons, (3,3,3), activation='relu', padding='same')(input)
    conv2 = Conv3D(neurons, (3,3,3), activation='relu', padding='same')(conv1)
    conc1 = concatenate([input, conv2], axis=4)
    pool = MaxPooling3D(pool_size=(2, 2, 2))(conc1)
    return pool, conv2

# Create the middle layer between the contracting and expanding layers 
开发者ID:muellerdo,项目名称:kits19.MIScnn,代码行数:10,代码来源:residual.py

示例8: contracting_layer

# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import MaxPooling3D [as 别名]
def contracting_layer(input, neurons):
    conv1 = Conv3D(neurons, (3,3,3), activation='relu', padding='same')(input)
    conv2 = Conv3D(neurons, (3,3,3), activation='relu', padding='same')(conv1)
    pool = MaxPooling3D(pool_size=(2, 2, 2))(conv2)
    return pool, conv2

# Create the middle layer between the contracting and expanding layers 
开发者ID:muellerdo,项目名称:kits19.MIScnn,代码行数:9,代码来源:standard.py

示例9: get_model_compiled

# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import MaxPooling3D [as 别名]
def get_model_compiled(args, inputshape, num_class):
    model = Sequential()
    if args.arch == "CNN1D":
        model.add(Conv1D(20, (24), activation='relu', input_shape=inputshape))
        model.add(MaxPooling1D(pool_size=5))
        model.add(Flatten())
        model.add(Dense(100))
    elif "CNN2D" in args.arch:
        model.add(Conv2D(50, kernel_size=(5, 5), input_shape=inputshape))
        model.add(Activation('relu'))
        model.add(Conv2D(100, (5, 5)))
        model.add(Activation('relu'))
        model.add(MaxPooling2D(pool_size=(2, 2)))
        model.add(Flatten())
        model.add(Dense(100))
    elif args.arch == "CNN3D":
        model.add(Conv3D(32, kernel_size=(5, 5, 24), input_shape=inputshape))
        model.add(BatchNormalization())
        model.add(Activation('relu'))
        model.add(Conv3D(64, (5, 5, 16)))
        model.add(BatchNormalization())
        model.add(Activation('relu'))
        model.add(MaxPooling3D(pool_size=(2, 2, 1)))
        model.add(Flatten())
        model.add(Dense(300))
    if args.arch != "CNN2D": model.add(BatchNormalization())
    model.add(Activation('relu'))
    model.add(Dense(num_class, activation='softmax'))
    model.compile(loss=categorical_crossentropy, optimizer=Adam(args.lr1), metrics=['accuracy']) 
    return model 
开发者ID:mhaut,项目名称:hyperspectral_deeplearning_review,代码行数:32,代码来源:transfer_learning.py

示例10: nn_architecture_seg_3d

# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import MaxPooling3D [as 别名]
def nn_architecture_seg_3d(input_shape, pool_size=(2, 2, 2), n_labels=1, initial_learning_rate=0.00001,
                        depth=3, n_base_filters=16, metrics=dice_coefficient, batch_normalization=True):
    inputs = Input(input_shape)
    current_layer = inputs
    levels = list()

    for layer_depth in range(depth):
        layer1 = create_convolution_block(input_layer=current_layer, n_filters=n_base_filters * (2**layer_depth),
                                          batch_normalization=batch_normalization)
        layer2 = create_convolution_block(input_layer=layer1, n_filters=n_base_filters * (2**layer_depth) * 2,
                                          batch_normalization=batch_normalization)
        if layer_depth < depth - 1:
            current_layer = MaxPooling3D(pool_size=pool_size)(layer2)
            levels.append([layer1, layer2, current_layer])
        else:
            current_layer = layer2
            levels.append([layer1, layer2])

    for layer_depth in range(depth - 2, -1, -1):
        up_convolution = UpSampling3D(size=pool_size)
        concat = concatenate([up_convolution, levels[layer_depth][1]], axis=1)
        current_layer = create_convolution_block(n_filters=levels[layer_depth][1]._keras_shape[1],
                                                 input_layer=concat, batch_normalization=batch_normalization)
        current_layer = create_convolution_block(n_filters=levels[layer_depth][1]._keras_shape[1],
                                                 input_layer=current_layer,
                                                 batch_normalization=batch_normalization)

    final_convolution = Conv3D(n_labels, (1, 1, 1))(current_layer)
    act = Activation('sigmoid')(final_convolution)
    model = Model(inputs=inputs, outputs=act)

    if not isinstance(metrics, list):
        metrics = [metrics]

    model.compile(optimizer=Adam(lr=initial_learning_rate), loss=dice_coefficient_loss, metrics=metrics)
    return model 
开发者ID:neuropoly,项目名称:spinalcordtoolbox,代码行数:38,代码来源:cnn_models_3d.py

示例11: inception3D

# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import MaxPooling3D [as 别名]
def inception3D(image_size, num_labels):
    num_channels=1
    inputs = Input(shape = (image_size, image_size, image_size, num_channels))

    m = Convolution3D(32, 5, 5, 5, subsample=(1, 1, 1), activation='relu', border_mode='valid', input_shape=())(inputs)
    m = MaxPooling3D(pool_size=(2, 2, 2), strides=None, border_mode='same')(m)

    # inception module 0
    branch1x1 = Convolution3D(32, 1, 1, 1, subsample=(1, 1, 1), activation='relu', border_mode='same')(m)
    branch3x3_reduce = Convolution3D(32, 1, 1, 1, subsample=(1, 1, 1), activation='relu', border_mode='same')(m)
    branch3x3 = Convolution3D(64, 3, 3, 3, subsample=(1, 1, 1), activation='relu', border_mode='same')(branch3x3_reduce)
    branch5x5_reduce = Convolution3D(16, 1, 1, 1, subsample=(1, 1, 1), activation='relu', border_mode='same')(m)
    branch5x5 = Convolution3D(32, 5, 5, 5, subsample=(1, 1, 1), activation='relu', border_mode='same')(branch5x5_reduce)
    branch_pool = MaxPooling3D(pool_size=(2, 2, 2), strides=(1, 1, 1), border_mode='same')(m)
    branch_pool_proj = Convolution3D(32, 1, 1, 1, subsample=(1, 1, 1), activation='relu', border_mode='same')(branch_pool)
    #m = merge([branch1x1, branch3x3, branch5x5, branch_pool_proj], mode='concat', concat_axis=-1)
    from keras.layers import concatenate
    m = concatenate([branch1x1, branch3x3, branch5x5, branch_pool_proj],axis=-1)

    m = AveragePooling3D(pool_size=(2, 2, 2), strides=(1, 1, 1), border_mode='valid')(m)
    m = Flatten()(m)
    m = Dropout(0.7)(m)

    # expliciately seperate Dense and Activation layers in order for projecting to structural feature space
    m = Dense(num_labels, activation='linear')(m)
    m = Activation('softmax')(m)

    mod = KM.Model(input=inputs, output=m)

    return mod 
开发者ID:xulabs,项目名称:aitom,代码行数:32,代码来源:subdivide.py

示例12: model_simple_upsampling__reshape

# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import MaxPooling3D [as 别名]
def model_simple_upsampling__reshape(img_shape, class_n=None):

    from keras.layers import Input, Dense, Convolution3D, MaxPooling3D, UpSampling3D, Reshape, Flatten
    from keras.models import Sequential, Model
    from keras.layers.core import Activation
    from aitom.classify.deep.unsupervised.autoencoder.seg_util import conv_block

    NUM_CHANNELS=1
    input_shape = (None, img_shape[0], img_shape[1], img_shape[2], NUM_CHANNELS)

    # use relu activation for hidden layer to guarantee non-negative outputs are passed to the max pooling layer. In such case, as long as the output layer is linear activation, the network can still accomodate negative image intendities, just matter of shift back using the bias term
    input_img = Input(shape=input_shape[1:])
    x = input_img

    x = conv_block(x, 32, 3, 3, 3)
    x = MaxPooling3D((2, 2, 2), border_mode='same')(x)
    x = conv_block(x, 32, 3, 3, 3)
    x = MaxPooling3D((2, 2, 2), border_mode='same')(x)

    x = conv_block(x, 32, 3, 3, 3)

    x = UpSampling3D((2, 2, 2))(x)
    x = conv_block(x, 32, 3, 3, 3)

    x = UpSampling3D((2, 2, 2))(x)
    x = conv_block(x, 32, 3, 3, 3)

    x = Convolution3D(class_n, 1, 1, 1, border_mode='same')(x)
    x = Reshape((N.prod(img_shape), class_n))(x)
    x = Activation('softmax')(x)

    model = Model(input=input_img, output=x)

    print('model layers:')
    for l in model.layers:    print (l.output_shape, l.name)

    return model 
开发者ID:xulabs,项目名称:aitom,代码行数:39,代码来源:seg_src.py

示例13: c3d_model

# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import MaxPooling3D [as 别名]
def c3d_model():
    input_shape = (112, 112, 8, 3)
    weight_decay = 0.005
    nb_classes = 101

    inputs = Input(input_shape)
    x = Conv3D(64,(3,3,3),strides=(1,1,1),padding='same',
               activation='relu',kernel_regularizer=l2(weight_decay))(inputs)
    x = MaxPooling3D((2,2,1),strides=(2,2,1),padding='same')(x)

    x = Conv3D(128,(3,3,3),strides=(1,1,1),padding='same',
               activation='relu',kernel_regularizer=l2(weight_decay))(x)
    x = MaxPooling3D((2,2,2),strides=(2,2,2),padding='same')(x)

    x = Conv3D(128,(3,3,3),strides=(1,1,1),padding='same',
               activation='relu',kernel_regularizer=l2(weight_decay))(x)
    x = MaxPooling3D((2,2,2),strides=(2,2,2),padding='same')(x)

    x = Conv3D(256,(3,3,3),strides=(1,1,1),padding='same',
               activation='relu',kernel_regularizer=l2(weight_decay))(x)
    x = MaxPooling3D((2,2,2),strides=(2,2,2),padding='same')(x)

    x = Conv3D(256, (3, 3, 3), strides=(1, 1, 1), padding='same',
               activation='relu',kernel_regularizer=l2(weight_decay))(x)
    x = MaxPooling3D((2, 2, 1), strides=(2, 2, 1), padding='same')(x)

    x = Flatten()(x)
    x = Dense(2048,activation='relu',kernel_regularizer=l2(weight_decay))(x)
    x = Dropout(0.5)(x)
    x = Dense(2048,activation='relu',kernel_regularizer=l2(weight_decay))(x)
    x = Dropout(0.5)(x)
    x = Dense(nb_classes,kernel_regularizer=l2(weight_decay))(x)
    x = Activation('softmax')(x)

    model = Model(inputs, x)
    return model 
开发者ID:TianzhongSong,项目名称:3D-ConvNets-for-Action-Recognition,代码行数:38,代码来源:c3d.py

示例14: timeception_temporal_convolutions

# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import MaxPooling3D [as 别名]
def timeception_temporal_convolutions(tensor, n_layers, n_groups, expansion_factor, is_dilated=True):
    input_shape = K.int_shape(tensor)
    assert len(input_shape) == 5

    _, n_timesteps, side_dim, side_dim, n_channels_in = input_shape

    # collapse regions in one dim
    tensor = ReshapeLayer((n_timesteps, side_dim * side_dim, 1, n_channels_in))(tensor)

    for i in range(n_layers):

        n_channels_per_branch, n_channels_out = __get_n_channels_per_branch(n_groups, expansion_factor, n_channels_in)

        # add global pooling as local regions
        tensor = __global_spatial_pooling(tensor)

        # temporal conv (inception-style, shuffled)
        if is_dilated:
            tensor = __timeception_shuffled_depthwise_dilated(tensor, n_groups, n_channels_per_branch)
        else:
            tensor = __timeception_shuffled_depthwise(tensor, n_groups, n_channels_per_branch)

        # downsample over time
        tensor = MaxPooling3D(pool_size=(2, 1, 1))(tensor)
        n_channels_in = n_channels_out

    return tensor 
开发者ID:noureldien,项目名称:videograph,代码行数:29,代码来源:timeception.py

示例15: timeception_temporal_convolutions_parallelized

# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import MaxPooling3D [as 别名]
def timeception_temporal_convolutions_parallelized(tensor, n_layers, n_groups, expansion_factor, is_dilated=True):
    input_shape = K.int_shape(tensor)
    assert len(input_shape) == 5

    raise Exception('Sorry, not implemented now')

    _, n_timesteps, side_dim, side_dim, n_channels_in = input_shape

    # collapse regions in one dim
    tensor = ReshapeLayer((n_timesteps, side_dim * side_dim, 1, n_channels_in))(tensor)

    for i in range(n_layers):
        # add global pooling as regions
        tensor = __global_spatial_pooling(tensor)

        # temporal conv (inception-style, shuffled)
        n_channels_per_branch, n_channels_out = __get_n_channels_per_branch(n_groups, expansion_factor, n_channels_in)
        if is_dilated:
            tensor = __timeception_shuffled_depthwise_dilated_parallelized(tensor, n_groups, n_channels_per_branch)
        else:
            tensor = __timeception_shuffled_depthwise_parallelized(tensor, n_groups, n_channels_per_branch)
        tensor = MaxPooling3D(pool_size=(2, 1, 1))(tensor)
        n_channels_in = n_channels_out

    return tensor

# endregion

# region Timeception Block 
开发者ID:noureldien,项目名称:videograph,代码行数:31,代码来源:timeception.py


注:本文中的keras.layers.MaxPooling3D方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。