本文整理汇总了Python中keras.layers.MaxPool2D方法的典型用法代码示例。如果您正苦于以下问题:Python layers.MaxPool2D方法的具体用法?Python layers.MaxPool2D怎么用?Python layers.MaxPool2D使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类keras.layers
的用法示例。
在下文中一共展示了layers.MaxPool2D方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: gettest_model
# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import MaxPool2D [as 别名]
def gettest_model():
input = Input(shape=[16, 66, 3]) # change this shape to [None,None,3] to enable arbitraty shape input
A = Conv2D(10, (3, 3), strides=1, padding='valid', name='conv1')(input)
B = Activation("relu", name='relu1')(A)
C = MaxPool2D(pool_size=2)(B)
x = Conv2D(16, (3, 3), strides=1, padding='valid', name='conv2')(C)
x = Activation("relu", name='relu2')(x)
x = Conv2D(32, (3, 3), strides=1, padding='valid', name='conv3')(x)
K = Activation("relu", name='relu3')(x)
x = Flatten()(K)
dense = Dense(2,name = "dense")(x)
output = Activation("relu", name='relu4')(dense)
x = Model([input], [output])
x.load_weights("./model/model12.h5")
ok = Model([input], [dense])
for layer in ok.layers:
print(layer)
return ok
示例2: convolutional_autoencoder
# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import MaxPool2D [as 别名]
def convolutional_autoencoder():
input_shape=(28,28,1)
n_channels = input_shape[-1]
model = Sequential()
model.add(Conv2D(32, (3,3), activation='relu', padding='same', input_shape=input_shape))
model.add(MaxPool2D(padding='same'))
model.add(Conv2D(16, (3,3), activation='relu', padding='same'))
model.add(MaxPool2D(padding='same'))
model.add(Conv2D(8, (3,3), activation='relu', padding='same'))
model.add(UpSampling2D())
model.add(Conv2D(16, (3,3), activation='relu', padding='same'))
model.add(UpSampling2D())
model.add(Conv2D(32, (3,3), activation='relu', padding='same'))
model.add(Conv2D(n_channels, (3,3), activation='sigmoid', padding='same'))
return model
示例3: model_definition
# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import MaxPool2D [as 别名]
def model_definition():
""" Keras RNetwork for MTCNN """
input_ = Input(shape=(24, 24, 3))
var_x = Conv2D(28, (3, 3), strides=1, padding='valid', name='conv1')(input_)
var_x = PReLU(shared_axes=[1, 2], name='prelu1')(var_x)
var_x = MaxPool2D(pool_size=3, strides=2, padding='same')(var_x)
var_x = Conv2D(48, (3, 3), strides=1, padding='valid', name='conv2')(var_x)
var_x = PReLU(shared_axes=[1, 2], name='prelu2')(var_x)
var_x = MaxPool2D(pool_size=3, strides=2)(var_x)
var_x = Conv2D(64, (2, 2), strides=1, padding='valid', name='conv3')(var_x)
var_x = PReLU(shared_axes=[1, 2], name='prelu3')(var_x)
var_x = Permute((3, 2, 1))(var_x)
var_x = Flatten()(var_x)
var_x = Dense(128, name='conv4')(var_x)
var_x = PReLU(name='prelu4')(var_x)
classifier = Dense(2, activation='softmax', name='conv5-1')(var_x)
bbox_regress = Dense(4, name='conv5-2')(var_x)
return [input_], [classifier, bbox_regress]
示例4: create_Kao_Onet
# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import MaxPool2D [as 别名]
def create_Kao_Onet( weight_path = 'model48.h5'):
input = Input(shape = [48,48,3])
x = Conv2D(32, (3, 3), strides=1, padding='valid', name='conv1')(input)
x = PReLU(shared_axes=[1,2],name='prelu1')(x)
x = MaxPool2D(pool_size=3, strides=2, padding='same')(x)
x = Conv2D(64, (3, 3), strides=1, padding='valid', name='conv2')(x)
x = PReLU(shared_axes=[1,2],name='prelu2')(x)
x = MaxPool2D(pool_size=3, strides=2)(x)
x = Conv2D(64, (3, 3), strides=1, padding='valid', name='conv3')(x)
x = PReLU(shared_axes=[1,2],name='prelu3')(x)
x = MaxPool2D(pool_size=2)(x)
x = Conv2D(128, (2, 2), strides=1, padding='valid', name='conv4')(x)
x = PReLU(shared_axes=[1,2],name='prelu4')(x)
x = Permute((3,2,1))(x)
x = Flatten()(x)
x = Dense(256, name='conv5') (x)
x = PReLU(name='prelu5')(x)
classifier = Dense(2, activation='softmax',name='conv6-1')(x)
bbox_regress = Dense(4,name='conv6-2')(x)
landmark_regress = Dense(10,name='conv6-3')(x)
model = Model([input], [classifier, bbox_regress, landmark_regress])
model.load_weights(weight_path, by_name=True)
return model
示例5: create_Kao_Rnet
# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import MaxPool2D [as 别名]
def create_Kao_Rnet (weight_path = 'model24.h5'):
input = Input(shape=[24, 24, 3]) # change this shape to [None,None,3] to enable arbitraty shape input
x = Conv2D(28, (3, 3), strides=1, padding='valid', name='conv1')(input)
x = PReLU(shared_axes=[1, 2], name='prelu1')(x)
x = MaxPool2D(pool_size=3,strides=2, padding='same')(x)
x = Conv2D(48, (3, 3), strides=1, padding='valid', name='conv2')(x)
x = PReLU(shared_axes=[1, 2], name='prelu2')(x)
x = MaxPool2D(pool_size=3, strides=2)(x)
x = Conv2D(64, (2, 2), strides=1, padding='valid', name='conv3')(x)
x = PReLU(shared_axes=[1, 2], name='prelu3')(x)
x = Permute((3, 2, 1))(x)
x = Flatten()(x)
x = Dense(128, name='conv4')(x)
x = PReLU( name='prelu4')(x)
classifier = Dense(2, activation='softmax', name='conv5-1')(x)
bbox_regress = Dense(4, name='conv5-2')(x)
model = Model([input], [classifier, bbox_regress])
model.load_weights(weight_path, by_name=True)
return model
示例6: get_convnet_landslide_all
# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import MaxPool2D [as 别名]
def get_convnet_landslide_all(args) -> Model:
input_shape = (args.area_size, args.area_size, 14)
model = Sequential()
model.add(Conv2D(8, 3, 3, input_shape=input_shape, init='normal'))
model.add(Activation('relu'))
model.add(Conv2D(8, 3, 3, init='normal'))
model.add(Activation('relu'))
model.add(MaxPool2D((1, 1), strides=(1, 1)))
model.add(Dropout(0.25))
model.add(Flatten(name="flatten"))
#
model.add(Dense(512, activation='relu', name='dense', init='normal'))
model.add(Dropout(0.25))
model.add(Dense(1, name='last_layer'))
model.add(Activation('sigmoid'))
return model
示例7: get_model_1
# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import MaxPool2D [as 别名]
def get_model_1(args):
model = Sequential()
model.add(Conv2D(32, (5, 5), input_shape=(args.area_size, args.area_size, 14)))
model.add(Activation('relu'))
model.add(Conv2D(16, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPool2D((1, 1), strides=(1, 1)))
model.add(Dropout(0.25))
#
model.add(AvgPool2D((3, 3), strides=(1, 1)))
model.add(Flatten(name="flatten"))
#
model.add(Dense(1, name='last_layer'))
model.add(Activation('sigmoid'))
return model
示例8: get_model_cifar
# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import MaxPool2D [as 别名]
def get_model_cifar(args):
model = Sequential()
model.add(Conv2D(32, (3, 3), padding='same', input_shape=(args.area_size, args.area_size, 14)))
model.add(Activation('relu'))
model.add(Conv2D(32, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPool2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Conv2D(64, (3, 3), padding='same'))
model.add(Activation('relu'))
model.add(Conv2D(64, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPool2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(512))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(1))
model.add(Activation('sigmoid'))
return model
示例9: create_Pnet
# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import MaxPool2D [as 别名]
def create_Pnet(weight_path):
input = Input(shape=[None, None, 3])
x = Conv2D(10, (3, 3), strides=1, padding='valid', name='conv1')(input)
x = PReLU(shared_axes=[1,2],name='PReLU1')(x)
x = MaxPool2D(pool_size=2)(x)
x = Conv2D(16, (3, 3), strides=1, padding='valid', name='conv2')(x)
x = PReLU(shared_axes=[1,2],name='PReLU2')(x)
x = Conv2D(32, (3, 3), strides=1, padding='valid', name='conv3')(x)
x = PReLU(shared_axes=[1,2],name='PReLU3')(x)
classifier = Conv2D(2, (1, 1), activation='softmax', name='conv4-1')(x)
# 无激活函数,线性。
bbox_regress = Conv2D(4, (1, 1), name='conv4-2')(x)
model = Model([input], [classifier, bbox_regress])
model.load_weights(weight_path, by_name=True)
return model
#-----------------------------#
# mtcnn的第二段
# 精修框
#-----------------------------#
示例10: down_sample
# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import MaxPool2D [as 别名]
def down_sample(self, x, filters):
x_filters = int(x.shape[-1])
x_conv = layers.Conv2D(filters - x_filters, kernel_size=3, strides=(2, 2), padding='same')(x)
x_pool = layers.MaxPool2D()(x)
x = layers.concatenate([x_conv, x_pool], axis=-1)
x = layers.BatchNormalization()(x)
x = layers.Activation('relu')(x)
return x
开发者ID:JACKYLUO1991,项目名称:Face-skin-hair-segmentaiton-and-skin-color-evaluation,代码行数:10,代码来源:lednet.py
示例11: _SPP_block
# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import MaxPool2D [as 别名]
def _SPP_block(inp, kernels, strides):
pools = [MaxPool2D(pool_size = pool_size, strides = stride, padding = 'same')(inp) \
for pool_size, stride in zip(kernels, strides)]
pools = [inp] + pools
return concatenate(pools)
#Downsampling block is common to all YOLO-v3 models and are unaffected by the SPP or fully connected blocks or the number of labes
示例12: create_Pnet
# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import MaxPool2D [as 别名]
def create_Pnet(weight_path):
# h,w
input = Input(shape=[None, None, 3])
# h,w,3 -> h/2,w/2,10
x = Conv2D(10, (3, 3), strides=1, padding='valid', name='conv1')(input)
x = PReLU(shared_axes=[1,2],name='PReLU1')(x)
x = MaxPool2D(pool_size=2)(x)
# h/2,w/2,10 -> h/2,w/2,16
x = Conv2D(16, (3, 3), strides=1, padding='valid', name='conv2')(x)
x = PReLU(shared_axes=[1,2],name='PReLU2')(x)
# h/2,w/2,32
x = Conv2D(32, (3, 3), strides=1, padding='valid', name='conv3')(x)
x = PReLU(shared_axes=[1,2],name='PReLU3')(x)
# h/2, w/2, 2
classifier = Conv2D(2, (1, 1), activation='softmax', name='conv4-1')(x)
# 无激活函数,线性。
# h/2, w/2, 4
bbox_regress = Conv2D(4, (1, 1), name='conv4-2')(x)
model = Model([input], [classifier, bbox_regress])
model.load_weights(weight_path, by_name=True)
return model
#-----------------------------#
# mtcnn的第二段
# 精修框
#-----------------------------#
示例13: create_Rnet
# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import MaxPool2D [as 别名]
def create_Rnet(weight_path):
input = Input(shape=[24, 24, 3])
# 24,24,3 -> 11,11,28
x = Conv2D(28, (3, 3), strides=1, padding='valid', name='conv1')(input)
x = PReLU(shared_axes=[1, 2], name='prelu1')(x)
x = MaxPool2D(pool_size=3,strides=2, padding='same')(x)
# 11,11,28 -> 4,4,48
x = Conv2D(48, (3, 3), strides=1, padding='valid', name='conv2')(x)
x = PReLU(shared_axes=[1, 2], name='prelu2')(x)
x = MaxPool2D(pool_size=3, strides=2)(x)
# 4,4,48 -> 3,3,64
x = Conv2D(64, (2, 2), strides=1, padding='valid', name='conv3')(x)
x = PReLU(shared_axes=[1, 2], name='prelu3')(x)
# 3,3,64 -> 64,3,3
x = Permute((3, 2, 1))(x)
x = Flatten()(x)
# 576 -> 128
x = Dense(128, name='conv4')(x)
x = PReLU( name='prelu4')(x)
# 128 -> 2 128 -> 4
classifier = Dense(2, activation='softmax', name='conv5-1')(x)
bbox_regress = Dense(4, name='conv5-2')(x)
model = Model([input], [classifier, bbox_regress])
model.load_weights(weight_path, by_name=True)
return model
#-----------------------------#
# mtcnn的第三段
# 精修框并获得五个点
#-----------------------------#
示例14: create_Onet
# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import MaxPool2D [as 别名]
def create_Onet(weight_path):
input = Input(shape = [48,48,3])
# 48,48,3 -> 23,23,32
x = Conv2D(32, (3, 3), strides=1, padding='valid', name='conv1')(input)
x = PReLU(shared_axes=[1,2],name='prelu1')(x)
x = MaxPool2D(pool_size=3, strides=2, padding='same')(x)
# 23,23,32 -> 10,10,64
x = Conv2D(64, (3, 3), strides=1, padding='valid', name='conv2')(x)
x = PReLU(shared_axes=[1,2],name='prelu2')(x)
x = MaxPool2D(pool_size=3, strides=2)(x)
# 8,8,64 -> 4,4,64
x = Conv2D(64, (3, 3), strides=1, padding='valid', name='conv3')(x)
x = PReLU(shared_axes=[1,2],name='prelu3')(x)
x = MaxPool2D(pool_size=2)(x)
# 4,4,64 -> 3,3,128
x = Conv2D(128, (2, 2), strides=1, padding='valid', name='conv4')(x)
x = PReLU(shared_axes=[1,2],name='prelu4')(x)
# 3,3,128 -> 128,3,3
x = Permute((3,2,1))(x)
# 1152 -> 256
x = Flatten()(x)
x = Dense(256, name='conv5') (x)
x = PReLU(name='prelu5')(x)
# 鉴别
# 256 -> 2 256 -> 4 256 -> 10
classifier = Dense(2, activation='softmax',name='conv6-1')(x)
bbox_regress = Dense(4,name='conv6-2')(x)
landmark_regress = Dense(10,name='conv6-3')(x)
model = Model([input], [classifier, bbox_regress, landmark_regress])
model.load_weights(weight_path, by_name=True)
return model
示例15: tiny_yolo_main
# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import MaxPool2D [as 别名]
def tiny_yolo_main(input, num_anchors, num_classes):
network_1 = NetworkConv2D_BN_Leaky(input=input, channels=16, kernel_size=(3,3) )
network_1 = MaxPool2D(pool_size=(2,2), strides=(2,2), padding="same")(network_1)
network_1 = NetworkConv2D_BN_Leaky(input=network_1, channels=32, kernel_size=(3, 3))
network_1 = MaxPool2D(pool_size=(2, 2), strides=(2, 2), padding="same")(network_1)
network_1 = NetworkConv2D_BN_Leaky(input=network_1, channels=64, kernel_size=(3, 3))
network_1 = MaxPool2D(pool_size=(2, 2), strides=(2, 2), padding="same")(network_1)
network_1 = NetworkConv2D_BN_Leaky(input=network_1, channels=128, kernel_size=(3, 3))
network_1 = MaxPool2D(pool_size=(2, 2), strides=(2, 2), padding="same")(network_1)
network_1 = NetworkConv2D_BN_Leaky(input=network_1, channels=256, kernel_size=(3, 3))
network_2 = MaxPool2D(pool_size=(2, 2), strides=(2, 2), padding="same")(network_1)
network_2 = NetworkConv2D_BN_Leaky(input=network_2, channels=512, kernel_size=(3, 3))
network_2 = MaxPool2D(pool_size=(2, 2), strides=(1, 1), padding="same")(network_2)
network_2 = NetworkConv2D_BN_Leaky(input=network_2, channels=1024, kernel_size=(3, 3))
network_2 = NetworkConv2D_BN_Leaky(input=network_2, channels=256, kernel_size=(1, 1))
network_3 = NetworkConv2D_BN_Leaky(input=network_2, channels=512, kernel_size=(3, 3))
network_3 = Conv2D(num_anchors * (num_classes + 5), kernel_size=(1,1))(network_3)
network_2 = NetworkConv2D_BN_Leaky(input=network_2, channels=128, kernel_size=(1, 1))
network_2 = UpSampling2D(2)(network_2)
network_4 = Concatenate()([network_2, network_1])
network_4 = NetworkConv2D_BN_Leaky(input=network_4, channels=256, kernel_size=(3, 3))
network_4 = Conv2D(num_anchors * (num_classes + 5), kernel_size=(1,1))(network_4)
return Model(input, [network_3, network_4])