本文整理汇总了Python中keras.layers.Masking方法的典型用法代码示例。如果您正苦于以下问题:Python layers.Masking方法的具体用法?Python layers.Masking怎么用?Python layers.Masking使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类keras.layers
的用法示例。
在下文中一共展示了layers.Masking方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: get_audio_model
# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import Masking [as 别名]
def get_audio_model(self):
# Modality specific hyperparameters
self.epochs = 100
self.batch_size = 50
# Modality specific parameters
self.embedding_dim = self.train_x.shape[2]
print("Creating Model...")
inputs = Input(shape=(self.sequence_length, self.embedding_dim), dtype='float32')
masked = Masking(mask_value =0)(inputs)
lstm = Bidirectional(LSTM(300, activation='tanh', return_sequences = True, dropout=0.4))(masked)
lstm = Bidirectional(LSTM(300, activation='tanh', return_sequences = True, dropout=0.4), name="utter")(lstm)
output = TimeDistributed(Dense(self.classes,activation='softmax'))(lstm)
model = Model(inputs, output)
return model
示例2: get_bimodal_model
# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import Masking [as 别名]
def get_bimodal_model(self):
# Modality specific hyperparameters
self.epochs = 100
self.batch_size = 10
# Modality specific parameters
self.embedding_dim = self.train_x.shape[2]
print("Creating Model...")
inputs = Input(shape=(self.sequence_length, self.embedding_dim), dtype='float32')
masked = Masking(mask_value =0)(inputs)
lstm = Bidirectional(LSTM(300, activation='tanh', return_sequences = True, dropout=0.4), name="utter")(masked)
output = TimeDistributed(Dense(self.classes,activation='softmax'))(lstm)
model = Model(inputs, output)
return model
示例3: _build_model
# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import Masking [as 别名]
def _build_model(self, num_features, num_actions, max_history_len):
"""Build a keras model and return a compiled model.
:param max_history_len: The maximum number of historical turns used to
decide on next action"""
from keras.layers import LSTM, Activation, Masking, Dense
from keras.models import Sequential
n_hidden = 32 # size of hidden layer in LSTM
# Build Model
batch_shape = (None, max_history_len, num_features)
model = Sequential()
model.add(Masking(-1, batch_input_shape=batch_shape))
model.add(LSTM(n_hidden, batch_input_shape=batch_shape))
model.add(Dense(input_dim=n_hidden, output_dim=num_actions))
model.add(Activation('softmax'))
model.compile(loss='categorical_crossentropy',
optimizer='adam',
metrics=['accuracy'])
logger.debug(model.summary())
return model
示例4: _build_model
# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import Masking [as 别名]
def _build_model(self, num_features, num_actions, max_history_len):
"""Build a keras model and return a compiled model.
:param max_history_len: The maximum number of historical turns used to
decide on next action"""
from keras.layers import Activation, Masking, Dense, SimpleRNN
from keras.models import Sequential
n_hidden = 8 # size of hidden layer in RNN
# Build Model
batch_input_shape = (None, max_history_len, num_features)
model = Sequential()
model.add(Masking(-1, batch_input_shape=batch_input_shape))
model.add(SimpleRNN(n_hidden, batch_input_shape=batch_input_shape))
model.add(Dense(input_dim=n_hidden, output_dim=num_actions))
model.add(Activation('softmax'))
model.compile(loss='categorical_crossentropy',
optimizer='adam',
metrics=['accuracy'])
logger.debug(model.summary())
return model
示例5: _build_model
# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import Masking [as 别名]
def _build_model(self, num_features, num_actions, max_history_len):
"""Build a keras model and return a compiled model.
:param max_history_len: The maximum number of historical
turns used to decide on next action
"""
from keras.layers import LSTM, Activation, Masking, Dense
from keras.models import Sequential
n_hidden = 32 # Neural Net and training params
batch_shape = (None, max_history_len, num_features)
# Build Model
model = Sequential()
model.add(Masking(-1, batch_input_shape=batch_shape))
model.add(LSTM(n_hidden, batch_input_shape=batch_shape))
model.add(Dense(input_dim=n_hidden, units=num_actions))
model.add(Activation('softmax'))
model.compile(loss='categorical_crossentropy',
optimizer='rmsprop',
metrics=['accuracy'])
logger.debug(model.summary())
return model
示例6: model_masking
# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import Masking [as 别名]
def model_masking(discrete_time, init_alpha, max_beta):
model = Sequential()
model.add(Masking(mask_value=mask_value,
input_shape=(n_timesteps, n_features)))
model.add(TimeDistributed(Dense(2)))
model.add(Lambda(wtte.output_lambda, arguments={"init_alpha": init_alpha,
"max_beta_value": max_beta}))
if discrete_time:
loss = wtte.loss(kind='discrete', reduce_loss=False).loss_function
else:
loss = wtte.loss(kind='continuous', reduce_loss=False).loss_function
model.compile(loss=loss, optimizer=RMSprop(
lr=lr), sample_weight_mode='temporal')
return model
示例7: model_architecture
# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import Masking [as 别名]
def model_architecture(self, num_features, num_actions, max_history_len):
"""Build a Keras model and return a compiled model."""
from keras.layers import LSTM, Activation, Masking, Dense
from keras.models import Sequential
n_hidden = 32 # size of hidden layer in LSTM
# Build Model
batch_shape = (None, max_history_len, num_features)
model = Sequential()
model.add(Masking(-1, batch_input_shape=batch_shape))
model.add(LSTM(n_hidden, batch_input_shape=batch_shape))
model.add(Dense(input_dim=n_hidden, output_dim=num_actions))
model.add(Activation("softmax"))
model.compile(loss="categorical_crossentropy",
optimizer="adam",
metrics=["accuracy"])
logger.debug(model.summary())
return model
示例8: create_network
# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import Masking [as 别名]
def create_network(nb_features, nb_labels, padding_value):
# Define the network architecture
input_data = Input(name='input', shape=(None, nb_features)) # nb_features = image height
masking = Masking(mask_value=padding_value)(input_data)
noise = GaussianNoise(0.01)(masking)
blstm = Bidirectional(LSTM(128, return_sequences=True, dropout=0.1))(noise)
blstm = Bidirectional(LSTM(128, return_sequences=True, dropout=0.1))(blstm)
blstm = Bidirectional(LSTM(128, return_sequences=True, dropout=0.1))(blstm)
dense = TimeDistributed(Dense(nb_labels + 1, name="dense"))(blstm)
outrnn = Activation('softmax', name='softmax')(dense)
network = CTCModel([input_data], [outrnn])
network.compile(Adam(lr=0.0001))
return network
示例9: creat_model
# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import Masking [as 别名]
def creat_model(input_shape, num_class):
init = initializers.Orthogonal(gain=args.norm)
sequence_input =Input(shape=input_shape)
mask = Masking(mask_value=0.)(sequence_input)
if args.aug:
mask = augmentaion()(mask)
X = Noise(0.075)(mask)
if args.model[0:2]=='VA':
# VA
trans = LSTM(args.nhid,recurrent_activation='sigmoid',return_sequences=True,implementation=2,recurrent_initializer=init)(X)
trans = Dropout(0.5)(trans)
trans = TimeDistributed(Dense(3,kernel_initializer='zeros'))(trans)
rot = LSTM(args.nhid,recurrent_activation='sigmoid',return_sequences=True,implementation=2,recurrent_initializer=init)(X)
rot = Dropout(0.5)(rot)
rot = TimeDistributed(Dense(3,kernel_initializer='zeros'))(rot)
transform = Concatenate()([rot,trans])
X = VA()([mask,transform])
X = LSTM(args.nhid,recurrent_activation='sigmoid',return_sequences=True,implementation=2,recurrent_initializer=init)(X)
X = Dropout(0.5)(X)
X = LSTM(args.nhid,recurrent_activation='sigmoid',return_sequences=True,implementation=2,recurrent_initializer=init)(X)
X = Dropout(0.5)(X)
X = LSTM(args.nhid,recurrent_activation='sigmoid',return_sequences=True,implementation=2,recurrent_initializer=init)(X)
X = Dropout(0.5)(X)
X = TimeDistributed(Dense(num_class))(X)
X = MeanOverTime()(X)
X = Activation('softmax')(X)
model=Model(sequence_input,X)
return model
开发者ID:microsoft,项目名称:View-Adaptive-Neural-Networks-for-Skeleton-based-Human-Action-Recognition,代码行数:33,代码来源:va-rnn.py
示例10: create_model
# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import Masking [as 别名]
def create_model(self):
model = Sequential()
#model.add(Masking(mask_value=0, input_shape=(1, self.settings.getint("LSTM", "max_vector_length"))))
model.add(LSTM_CELL(self.settings.getint("LSTM", "hidden_layers"),
input_shape=(self.settings.getint("LSTM", "time_series"), self.settings.getint("LSTM", "max_vector_length")),
return_sequences=True))
model.add(LSTM_CELL(self.settings.getint("LSTM", "hidden_layers")))
model.add(Dropout(self.settings.getfloat("LSTM", "dropout")))
model.add(Dense(self.settings.getint('LSTM', 'max_vector_length')))
return model
示例11: learn_model
# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import Masking [as 别名]
def learn_model(self, features, labels, degrade_mask, epochs=30, batch_size=None, model=None):
print('learning model')
if True or not model and not self.model:
model = Sequential()
masking = Masking(mask_value=0.0, input_shape=(features.shape[1], features.shape[2],))
model.add(masking)
crf = CRF(#input_shape=(features.shape[1], features.shape[2],),
units=labels.shape[-1],
sparse_target=False,
kernel_regularizer=keras.regularizers.l1_l2(0.0001, 0.0001),
#bias_regularizer=keras.regularizers.l2(0.005),
#chain_regularizer=keras.regularizers.l2(0.005),
#boundary_regularizer=keras.regularizers.l2(0.005),
learn_mode='marginal',
test_mode='marginal',
unroll=self.unroll_flag,
)
model.add(crf)
model.compile(optimizer=self.opt,
loss=crf_loss,
#loss=crf.loss_function,
metrics=[crf_accuracy],
#metrics=[crf.accuracy],
)
elif self.model:
model = self.model
else:
assert model
#assert features.shape[0] == len(self.degrade_mask)
#weights = self._weight_logic(features, degrade_mask)
model.fit(features,
labels,
epochs=epochs,
batch_size=batch_size,
verbose=1,
#sample_weight=weights,
)
return model
示例12: assemble_rnn
# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import Masking [as 别名]
def assemble_rnn(params, final_reshape=True):
"""Construct an RNN/LSTM/GRU model of the form: X-[H1-H2-...-HN]-Y.
All the H-layers are optional recurrent layers and depend on whether they
are specified in the params dictionary.
"""
# Input layer
input_shape = params['input_shape']
inputs = layers.Input(shape=input_shape)
# inputs = layers.Input(batch_shape=[20] + list(input_shape))
# Masking layer
previous = layers.Masking(mask_value=0.0)(inputs)
# Hidden layers
for layer in params['hidden_layers']:
Layer = layers.deserialize(
{'class_name': layer['name'], 'config': layer['config']})
previous = Layer(previous)
if 'dropout' in layer and layer['dropout'] is not None:
previous = layers.Dropout(layer['dropout'])(previous)
if 'batch_norm' in layer and layer['batch_norm'] is not None:
previous = layers.BatchNormalization(**layer['batch_norm'])(previous)
# Output layer
output_shape = params['output_shape']
output_dim = np.prod(output_shape)
outputs = layers.Dense(output_dim)(previous)
if final_reshape:
outputs = layers.Reshape(output_shape)(outputs)
return KerasModel(inputs=inputs, outputs=outputs)
示例13: test_merge_mask_2d
# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import Masking [as 别名]
def test_merge_mask_2d():
rand = lambda *shape: np.asarray(np.random.random(shape) > 0.5, dtype='int32')
# inputs
input_a = layers.Input(shape=(3,))
input_b = layers.Input(shape=(3,))
# masks
masked_a = layers.Masking(mask_value=0)(input_a)
masked_b = layers.Masking(mask_value=0)(input_b)
# three different types of merging
merged_sum = legacy_layers.merge([masked_a, masked_b], mode='sum')
merged_concat = legacy_layers.merge([masked_a, masked_b], mode='concat', concat_axis=1)
merged_concat_mixed = legacy_layers.merge([masked_a, input_b], mode='concat', concat_axis=1)
# test sum
model_sum = models.Model([input_a, input_b], [merged_sum])
model_sum.compile(loss='mse', optimizer='sgd')
model_sum.fit([rand(2, 3), rand(2, 3)], [rand(2, 3)], epochs=1)
# test concatenation
model_concat = models.Model([input_a, input_b], [merged_concat])
model_concat.compile(loss='mse', optimizer='sgd')
model_concat.fit([rand(2, 3), rand(2, 3)], [rand(2, 6)], epochs=1)
# test concatenation with masked and non-masked inputs
model_concat = models.Model([input_a, input_b], [merged_concat_mixed])
model_concat.compile(loss='mse', optimizer='sgd')
model_concat.fit([rand(2, 3), rand(2, 3)], [rand(2, 6)], epochs=1)
示例14: test_masking
# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import Masking [as 别名]
def test_masking():
layer_test(layers.Masking,
kwargs={},
input_shape=(3, 2, 3))
示例15: test_masking
# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import Masking [as 别名]
def test_masking():
np.random.seed(1337)
x = np.array([[[1], [1]],
[[0], [0]]])
model = Sequential()
model.add(Masking(mask_value=0, input_shape=(2, 1)))
model.add(TimeDistributed(Dense(1, kernel_initializer='one')))
model.compile(loss='mse', optimizer='sgd')
y = np.array([[[1], [1]],
[[1], [1]]])
loss = model.train_on_batch(x, y)
assert loss == 0