当前位置: 首页>>代码示例>>Python>>正文


Python layers.DepthwiseConv2D方法代码示例

本文整理汇总了Python中keras.layers.DepthwiseConv2D方法的典型用法代码示例。如果您正苦于以下问题:Python layers.DepthwiseConv2D方法的具体用法?Python layers.DepthwiseConv2D怎么用?Python layers.DepthwiseConv2D使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在keras.layers的用法示例。


在下文中一共展示了layers.DepthwiseConv2D方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_tiny_depthwise_conv_same_pad

# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import DepthwiseConv2D [as 别名]
def test_tiny_depthwise_conv_same_pad(self):
        np.random.seed(1988)
        input_dim = 16
        input_shape = (input_dim, input_dim, 3)
        depth_multiplier = 1
        kernel_height = 3
        kernel_width = 3

        # Define a model
        model = Sequential()
        model.add(
            DepthwiseConv2D(
                depth_multiplier=depth_multiplier,
                kernel_size=(kernel_height, kernel_width),
                input_shape=input_shape,
                padding="same",
                strides=(1, 1),
            )
        )

        # Set some random weights
        model.set_weights([np.random.rand(*w.shape) for w in model.get_weights()])

        # Test the keras model
        self._test_model(model) 
开发者ID:apple,项目名称:coremltools,代码行数:27,代码来源:test_keras2_numeric.py

示例2: test_tiny_depthwise_conv_valid_pad

# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import DepthwiseConv2D [as 别名]
def test_tiny_depthwise_conv_valid_pad(self):
        np.random.seed(1988)
        input_dim = 16
        input_shape = (input_dim, input_dim, 3)
        depth_multiplier = 1
        kernel_height = 3
        kernel_width = 3

        # Define a model
        model = Sequential()
        model.add(
            DepthwiseConv2D(
                depth_multiplier=depth_multiplier,
                kernel_size=(kernel_height, kernel_width),
                input_shape=input_shape,
                padding="valid",
                strides=(1, 1),
            )
        )

        # Set some random weights
        model.set_weights([np.random.rand(*w.shape) for w in model.get_weights()])

        # Test the keras model
        self._test_model(model) 
开发者ID:apple,项目名称:coremltools,代码行数:27,代码来源:test_keras2_numeric.py

示例3: test_tiny_depthwise_conv_same_pad_depth_multiplier

# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import DepthwiseConv2D [as 别名]
def test_tiny_depthwise_conv_same_pad_depth_multiplier(self):
        np.random.seed(1988)
        input_dim = 16
        input_shape = (input_dim, input_dim, 3)
        depth_multiplier = 4
        kernel_height = 3
        kernel_width = 3

        # Define a model
        model = Sequential()
        model.add(
            DepthwiseConv2D(
                depth_multiplier=depth_multiplier,
                kernel_size=(kernel_height, kernel_width),
                input_shape=input_shape,
                padding="same",
                strides=(1, 1),
            )
        )

        # Set some random weights
        model.set_weights([np.random.rand(*w.shape) for w in model.get_weights()])

        # Test the keras model
        self._test_model(model) 
开发者ID:apple,项目名称:coremltools,代码行数:27,代码来源:test_keras2_numeric.py

示例4: test_tiny_depthwise_conv_valid_pad_depth_multiplier

# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import DepthwiseConv2D [as 别名]
def test_tiny_depthwise_conv_valid_pad_depth_multiplier(self):
        np.random.seed(1988)
        input_dim = 16
        input_shape = (input_dim, input_dim, 3)
        depth_multiplier = 2
        kernel_height = 3
        kernel_width = 3

        # Define a model
        model = Sequential()
        model.add(
            DepthwiseConv2D(
                depth_multiplier=depth_multiplier,
                kernel_size=(kernel_height, kernel_width),
                input_shape=input_shape,
                padding="valid",
                strides=(1, 1),
            )
        )

        # Set some random weights
        model.set_weights([np.random.rand(*w.shape) for w in model.get_weights()])

        # Test the keras model
        self._test_model(model) 
开发者ID:apple,项目名称:coremltools,代码行数:27,代码来源:test_keras2_numeric.py

示例5: _inverted_res_block

# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import DepthwiseConv2D [as 别名]
def _inverted_res_block(inputs, expansion, stride, alpha, filters, block_id, skip_connection, rate=1):
    in_channels = inputs.shape[-1].value  # inputs._keras_shape[-1]
    pointwise_conv_filters = int(filters * alpha)
    pointwise_filters = _make_divisible(pointwise_conv_filters, 8)
    x = inputs
    prefix = 'expanded_conv_{}_'.format(block_id)
    if block_id:
        # Expand

        x = Conv2D(expansion * in_channels, kernel_size=1, padding='same',
                   use_bias=False, activation=None,
                   name=prefix + 'expand')(x)
        x = BatchNormalization(epsilon=1e-3, momentum=0.999,
                               name=prefix + 'expand_BN')(x)
        x = Activation(relu6, name=prefix + 'expand_relu')(x)
    else:
        prefix = 'expanded_conv_'
    # Depthwise
    x = DepthwiseConv2D(kernel_size=3, strides=stride, activation=None,
                        use_bias=False, padding='same', dilation_rate=(rate, rate),
                        name=prefix + 'depthwise')(x)
    x = BatchNormalization(epsilon=1e-3, momentum=0.999,
                           name=prefix + 'depthwise_BN')(x)

    x = Activation(relu6, name=prefix + 'depthwise_relu')(x)

    # Project
    x = Conv2D(pointwise_filters,
               kernel_size=1, padding='same', use_bias=False, activation=None,
               name=prefix + 'project')(x)
    x = BatchNormalization(epsilon=1e-3, momentum=0.999,
                           name=prefix + 'project_BN')(x)

    if skip_connection:
        return Add(name=prefix + 'add')([inputs, x])

    # if in_channels == pointwise_filters and stride == 1:
    #    return Add(name='res_connect_' + str(block_id))([inputs, x])

    return x 
开发者ID:bubbliiiing,项目名称:Semantic-Segmentation,代码行数:42,代码来源:mobilenetV2.py

示例6: SepConv_BN

# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import DepthwiseConv2D [as 别名]
def SepConv_BN(x, filters, prefix, stride=1, kernel_size=3, rate=1, depth_activation=False, epsilon=1e-3):
    # 计算padding的数量,hw是否需要收缩
    if stride == 1:
        depth_padding = 'same'
    else:
        kernel_size_effective = kernel_size + (kernel_size - 1) * (rate - 1)
        pad_total = kernel_size_effective - 1
        pad_beg = pad_total // 2
        pad_end = pad_total - pad_beg
        x = ZeroPadding2D((pad_beg, pad_end))(x)
        depth_padding = 'valid'
    
    # 如果需要激活函数
    if not depth_activation:
        x = Activation('relu')(x)

    # 分离卷积,首先3x3分离卷积,再1x1卷积
    # 3x3采用膨胀卷积
    x = DepthwiseConv2D((kernel_size, kernel_size), strides=(stride, stride), dilation_rate=(rate, rate),
                        padding=depth_padding, use_bias=False, name=prefix + '_depthwise')(x)
    x = BatchNormalization(name=prefix + '_depthwise_BN', epsilon=epsilon)(x)
    if depth_activation:
        x = Activation('relu')(x)

    # 1x1卷积,进行压缩
    x = Conv2D(filters, (1, 1), padding='same',
               use_bias=False, name=prefix + '_pointwise')(x)
    x = BatchNormalization(name=prefix + '_pointwise_BN', epsilon=epsilon)(x)
    if depth_activation:
        x = Activation('relu')(x)

    return x 
开发者ID:bubbliiiing,项目名称:Semantic-Segmentation,代码行数:34,代码来源:deeplab.py

示例7: SepConv_BN

# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import DepthwiseConv2D [as 别名]
def SepConv_BN(x, filters, prefix, stride=1, kernel_size=3, rate=1, depth_activation=False, epsilon=1e-3):
    """ SepConv with BN between depthwise & pointwise. Optionally add activation after BN
        Implements right "same" padding for even kernel sizes
        Args:
            x: input tensor
            filters: num of filters in pointwise convolution
            prefix: prefix before name
            stride: stride at depthwise conv
            kernel_size: kernel size for depthwise convolution
            rate: atrous rate for depthwise convolution
            depth_activation: flag to use activation between depthwise & poinwise convs
            epsilon: epsilon to use in BN layer
    """

    if stride == 1:
        depth_padding = 'same'
    else:
        kernel_size_effective = kernel_size + (kernel_size - 1) * (rate - 1)
        pad_total = kernel_size_effective - 1
        pad_beg = pad_total // 2
        pad_end = pad_total - pad_beg
        x = ZeroPadding2D((pad_beg, pad_end))(x)
        depth_padding = 'valid'

    if not depth_activation:
        x = Activation('relu')(x)
    x = DepthwiseConv2D((kernel_size, kernel_size), strides=(stride, stride), dilation_rate=(rate, rate),
                        padding=depth_padding, use_bias=False, name=prefix + '_depthwise')(x)
    x = BatchNormalization(name=prefix + '_depthwise_BN', epsilon=epsilon)(x)
    if depth_activation:
        x = Activation('relu')(x)
    x = Conv2D(filters, (1, 1), padding='same',
               use_bias=False, name=prefix + '_pointwise')(x)
    x = BatchNormalization(name=prefix + '_pointwise_BN', epsilon=epsilon)(x)
    if depth_activation:
        x = Activation('relu')(x)

    return x 
开发者ID:andrewekhalel,项目名称:edafa,代码行数:40,代码来源:model.py

示例8: _inverted_res_block

# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import DepthwiseConv2D [as 别名]
def _inverted_res_block(inputs, expansion, stride, alpha, filters, block_id, skip_connection, rate=1):
    in_channels = inputs._keras_shape[-1]
    pointwise_conv_filters = int(filters * alpha)
    pointwise_filters = _make_divisible(pointwise_conv_filters, 8)
    x = inputs
    prefix = 'expanded_conv_{}_'.format(block_id)
    if block_id:
        # Expand

        x = Conv2D(expansion * in_channels, kernel_size=1, padding='same',
                   use_bias=False, activation=None,
                   name=prefix + 'expand')(x)
        x = BatchNormalization(epsilon=1e-3, momentum=0.999,
                               name=prefix + 'expand_BN')(x)
        x = Activation(relu6, name=prefix + 'expand_relu')(x)
    else:
        prefix = 'expanded_conv_'
    # Depthwise
    x = DepthwiseConv2D(kernel_size=3, strides=stride, activation=None,
                        use_bias=False, padding='same', dilation_rate=(rate, rate),
                        name=prefix + 'depthwise')(x)
    x = BatchNormalization(epsilon=1e-3, momentum=0.999,
                           name=prefix + 'depthwise_BN')(x)

    x = Activation(relu6, name=prefix + 'depthwise_relu')(x)

    # Project
    x = Conv2D(pointwise_filters,
               kernel_size=1, padding='same', use_bias=False, activation=None,
               name=prefix + 'project')(x)
    x = BatchNormalization(epsilon=1e-3, momentum=0.999,
                           name=prefix + 'project_BN')(x)

    if skip_connection:
        return Add(name=prefix + 'add')([inputs, x])

    # if in_channels == pointwise_filters and stride == 1:
    #    return Add(name='res_connect_' + str(block_id))([inputs, x])

    return x 
开发者ID:andrewekhalel,项目名称:edafa,代码行数:42,代码来源:model.py

示例9: __init__

# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import DepthwiseConv2D [as 别名]
def __init__(self, model):
        super(Keras2Parser, self).__init__()

        # load model files into Keras graph
        if isinstance(model, _string_types):
            try:
                # Keras 2.1.6
                from keras.applications.mobilenet import relu6
                from keras.applications.mobilenet import DepthwiseConv2D
                model = _keras.models.load_model(
                    model,
                    custom_objects={
                        'relu6': _keras.applications.mobilenet.relu6,
                        'DepthwiseConv2D': _keras.applications.mobilenet.DepthwiseConv2D
                    }
                )
            except:
                # Keras. 2.2.2
                import keras.layers as layers
                model = _keras.models.load_model(
                    model,
                    custom_objects={
                        'relu6': layers.ReLU(6, name='relu6'),
                        'DepthwiseConv2D': layers.DepthwiseConv2D
                    }
                )
            self.weight_loaded = True

        elif isinstance(model, tuple):
            model = self._load_model(model[0], model[1])

        else:
            assert False

        # _keras.utils.plot_model(model, "model.png", show_shapes = True)

        # Build network graph
        self.data_format = _keras.backend.image_data_format()
        self.keras_graph = Keras2Graph(model)
        self.keras_graph.build()
        self.lambda_layer_count = 0 
开发者ID:microsoft,项目名称:MMdnn,代码行数:43,代码来源:keras2_parser.py

示例10: _emit_convolution

# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import DepthwiseConv2D [as 别名]
def _emit_convolution(self, IR_node, conv_type):
        self.used_layers.add('Conv')
        # assert IR_node.get_attr('group', 1) == 1
        group = IR_node.get_attr("group", 1)

        if conv_type.endswith('Transpose'):
            filters = IR_node.get_attr('kernel_shape')[-2]
        else:
            filters = IR_node.get_attr('kernel_shape')[-1]

        filters_str = 'filters={}'.format(filters) if not conv_type.endswith('DepthwiseConv2D') else 'depth_multiplier={}'.format(filters)
        # change dw from filters to 1


        input_node, padding = self._defuse_padding(IR_node)

        dilations = IR_node.get_attr('dilations')

        if not dilations or len(dilations) == 2:
            # reset the default dilation
            dilations = [1] * len(IR_node.get_attr('kernel_shape'))

        code = "{:<15} = convolution(weights_dict, name='{}', input={}, group={}, conv_type='{}', {}, kernel_size={}, strides={}, dilation_rate={}, padding='{}', use_bias={})".format(
            IR_node.variable_name,
            IR_node.name,
            input_node,
            group,
            conv_type,
            filters_str,
            tuple(IR_node.get_attr('kernel_shape')[:-2]),
            tuple(IR_node.get_attr('strides')[1:-1]),
            tuple(dilations[1:-1]),
            padding,
            IR_node.get_attr('use_bias'))

        return code 
开发者ID:microsoft,项目名称:MMdnn,代码行数:38,代码来源:keras2_emitter.py

示例11: emit_DepthwiseConv

# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import DepthwiseConv2D [as 别名]
def emit_DepthwiseConv(self, IR_node, in_scope=False):
        try:
            from keras.applications.mobilenet import DepthwiseConv2D
            return self._emit_convolution(IR_node, 'keras.applications.mobilenet.DepthwiseConv2D')
        except:
            return self._emit_convolution(IR_node, 'layers.DepthwiseConv2D') 
开发者ID:microsoft,项目名称:MMdnn,代码行数:8,代码来源:keras2_emitter.py

示例12: _layer_Conv

# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import DepthwiseConv2D [as 别名]
def _layer_Conv(self):
        self.add_body(0, """
def convolution(weights_dict, name, input, group, conv_type, filters=None, **kwargs):
    if not conv_type.startswith('layer'):
        layer = keras.applications.mobilenet.DepthwiseConv2D(name=name, **kwargs)(input)
        return layer
    elif conv_type == 'layers.DepthwiseConv2D':
        layer = layers.DepthwiseConv2D(name=name, **kwargs)(input)
        return layer
    
    inp_filters = K.int_shape(input)[-1]
    inp_grouped_channels = int(inp_filters / group)
    out_grouped_channels = int(filters / group)
    group_list = []
    if group == 1:
        func = getattr(layers, conv_type.split('.')[-1])
        layer = func(name = name, filters = filters, **kwargs)(input)
        return layer
    weight_groups = list()
    if not weights_dict == None:
        w = np.array(weights_dict[name]['weights'])
        weight_groups = np.split(w, indices_or_sections=group, axis=-1)
    for c in range(group):
        x = layers.Lambda(lambda z: z[..., c * inp_grouped_channels:(c + 1) * inp_grouped_channels])(input)
        x = layers.Conv2D(name=name + "_" + str(c), filters=out_grouped_channels, **kwargs)(x)
        weights_dict[name + "_" + str(c)] = dict()
        weights_dict[name + "_" + str(c)]['weights'] = weight_groups[c]
        group_list.append(x)
    layer = layers.concatenate(group_list, axis = -1)
    if 'bias' in weights_dict[name]:
        b = K.variable(weights_dict[name]['bias'], name = name + "_bias")
        layer = layer + b
    return layer""") 
开发者ID:microsoft,项目名称:MMdnn,代码行数:35,代码来源:keras2_emitter.py

示例13: load_model

# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import DepthwiseConv2D [as 别名]
def load_model(self):
        global Graph  # multiprocess-able

        config = tf.ConfigProto()
        config.gpu_options.allow_growth = True
        config.gpu_options.per_process_gpu_memory_fraction = 0.3
        set_session(tf.Session(config=config))

        # model.99-0.98.h5
        files = glob.glob('models/{}/model.*.h5'.format(self.model_name))

        if len(files) == 0:
            print('Trained model not found from "models/{}/model.*.h5"'.format(self.model_name))
            print('Building new model because model file not found...')

            return self.build_model(self.kernel, self.stride)

        last_file = max(files, key=os.path.getctime)

        file_name = last_file.replace('\\', '/').split('/')[-1].replace('model.', '').replace('.h5', '')
        self.epoch = int(file_name.split('-')[0])
        acc = float(file_name.split('-')[1])

        with CustomObjectScope({'relu6': tf.nn.relu6, 'DepthwiseConv2D': keras.layers.DepthwiseConv2D, 'tf': tf}):
            model = load_model(last_file)

        model.summary()

        Graph = tf.get_default_graph()

        print('Loaded last model - {}, epoch: {}, acc: {}'.format(last_file, self.epoch, acc))

        return model 
开发者ID:YoongiKim,项目名称:Walk-Assistant,代码行数:35,代码来源:model.py

示例14: _bottleneck

# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import DepthwiseConv2D [as 别名]
def _bottleneck(inputs, filters, kernel, t, s, r=False):
    """Bottleneck
    This function defines a basic bottleneck structure.
    # Arguments
        inputs: Tensor, input tensor of conv layer.
        filters: Integer, the dimensionality of the output space.
        kernel: An integer or tuple/list of 2 integers, specifying the
            width and height of the 2D convolution window.
        t: Integer, expansion factor.
            t is always applied to the input size.
        s: An integer or tuple/list of 2 integers,specifying the strides
            of the convolution along the width and height.Can be a single
            integer to specify the same value for all spatial dimensions.
        r: Boolean, Whether to use the residuals.
    # Returns
        Output tensor.
    """

    channel_axis = 1 if K.image_data_format() == 'channels_first' else -1
    tchannel = K.int_shape(inputs)[channel_axis] * t

    x = _conv_block(inputs, tchannel, (1, 1), (1, 1))

    x = Dist(DepthwiseConv2D(kernel, strides=(s, s), depth_multiplier=1, padding='same'))(x)
    x = Dist(BatchNormalization(axis=channel_axis))(x)
    x = Dist(Activation(relu6))(x)

    x = Dist(Conv2D(filters, (1, 1), strides=(1, 1), padding='same'))(x)
    x = Dist(BatchNormalization(axis=channel_axis))(x)

    if r:
        x = add([x, inputs])
    return x 
开发者ID:YoongiKim,项目名称:Walk-Assistant,代码行数:35,代码来源:mobilenet_v2.py

示例15: test_tiny_depthwise_conv_same_pad_depth_multiplier

# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import DepthwiseConv2D [as 别名]
def test_tiny_depthwise_conv_same_pad_depth_multiplier(self):
      np.random.seed(1988)
      input_dim = 16
      input_shape = (input_dim, input_dim, 3)
      depth_multiplier = 4
      kernel_height = 3
      kernel_width = 3
      # Define a model
      model = Sequential()
      model.add(DepthwiseConv2D(depth_multiplier=depth_multiplier, kernel_size=(kernel_height, kernel_width),
                                input_shape=input_shape, padding='same', strides=(1, 1)))
      # Set some random weights
      model.set_weights([np.random.rand(*w.shape) for w in model.get_weights()])
      # Test the keras model
      self._test_keras_model(model) 
开发者ID:tf-coreml,项目名称:tf-coreml,代码行数:17,代码来源:test_tf_keras_layers.py


注:本文中的keras.layers.DepthwiseConv2D方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。