本文整理汇总了Python中keras.layers.Convolution3D方法的典型用法代码示例。如果您正苦于以下问题:Python layers.Convolution3D方法的具体用法?Python layers.Convolution3D怎么用?Python layers.Convolution3D使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类keras.layers
的用法示例。
在下文中一共展示了layers.Convolution3D方法的13个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: conv_block
# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import Convolution3D [as 别名]
def conv_block(x, nb_filter, nb0, nb1, nb2, border_mode='same', subsample=(1, 1, 1), bias=True, batch_norm=False):
if K.image_dim_ordering() == "th":
channel_axis = 1
else:
channel_axis = -1
x = Convolution3D(nb_filter, nb0, nb1, nb2, subsample=subsample, border_mode=border_mode, bias=bias)(x)
if batch_norm:
assert not bias
x = BatchNormalization(axis=channel_axis)(x)
else:
assert bias
x = Activation('relu')(x)
return x
示例2: dsrff3D
# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import Convolution3D [as 别名]
def dsrff3D(image_size, num_labels):
num_channels=1
inputs = Input(shape = (image_size, image_size, image_size, num_channels))
# modified VGG19 architecture
bn_axis = 3
m = Convolution3D(32, 3, 3, 3, activation='relu', border_mode='same')(inputs)
m = Convolution3D(32, 3, 3, 3, activation='relu', border_mode='same')(m)
m = MaxPooling3D(pool_size=(2, 2, 2), strides=(2, 2, 2))(m)
m = Convolution3D(64, 3, 3, 3, activation='relu', border_mode='same')(m)
m = Convolution3D(64, 3, 3, 3, activation='relu', border_mode='same')(m)
m = MaxPooling3D(pool_size=(2, 2, 2), strides=(2, 2, 2))(m)
m = Flatten(name='flatten')(m)
m = Dense(512, activation='relu', name='fc1')(m)
m = Dense(512, activation='relu', name='fc2')(m)
m = Dense(num_labels, activation='softmax')(m)
mod = KM.Model(inputs=inputs, outputs=m)
return mod
示例3: conv_block
# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import Convolution3D [as 别名]
def conv_block(x, nb_filter, nb0, nb1, nb2, border_mode='same', subsample=(1, 1, 1), bias=True, batch_norm=False):
from keras.layers import Input, Dense, Convolution3D, MaxPooling3D, UpSampling3D, Reshape, Flatten, Activation
from keras.layers.normalization import BatchNormalization
from keras import backend as K
if K.image_dim_ordering() == "th":
channel_axis = 1
else:
channel_axis = -1
x = Convolution3D(nb_filter, nb0, nb1, nb2, subsample=subsample, border_mode=border_mode, bias=bias)(x)
if batch_norm:
assert not bias
x = BatchNormalization(axis=channel_axis)(x)
else:
assert bias
x = Activation('relu')(x)
return x
示例4: res_block
# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import Convolution3D [as 别名]
def res_block(input_tensor, nb_filters=16, block=0, subsample_factor=1):
subsample = (subsample_factor, subsample_factor, subsample_factor)
x = BatchNormalization(axis=4)(input_tensor)
x = Activation('relu')(x)
x = Convolution3D(nb_filters, 3, 3, 3, subsample=subsample, border_mode='same')(x)
x = BatchNormalization(axis=4)(x)
x = Activation('relu')(x)
x = Convolution3D(nb_filters, 3, 3, 3, subsample=(1, 1, 1), border_mode='same')(x)
if subsample_factor > 1:
shortcut = Convolution3D(nb_filters, 1, 1, 1, subsample=subsample, border_mode='same')(input_tensor)
else:
shortcut = input_tensor
x = merge([x, shortcut], mode='sum')
return x
示例5: inception3D
# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import Convolution3D [as 别名]
def inception3D(image_size, num_labels):
num_channels=1
inputs = Input(shape = (image_size, image_size, image_size, num_channels))
m = Convolution3D(32, 5, 5, 5, subsample=(1, 1, 1), activation='relu', border_mode='valid', input_shape=())(inputs)
m = MaxPooling3D(pool_size=(2, 2, 2), strides=None, border_mode='same')(m)
# inception module 0
branch1x1 = Convolution3D(32, 1, 1, 1, subsample=(1, 1, 1), activation='relu', border_mode='same')(m)
branch3x3_reduce = Convolution3D(32, 1, 1, 1, subsample=(1, 1, 1), activation='relu', border_mode='same')(m)
branch3x3 = Convolution3D(64, 3, 3, 3, subsample=(1, 1, 1), activation='relu', border_mode='same')(branch3x3_reduce)
branch5x5_reduce = Convolution3D(16, 1, 1, 1, subsample=(1, 1, 1), activation='relu', border_mode='same')(m)
branch5x5 = Convolution3D(32, 5, 5, 5, subsample=(1, 1, 1), activation='relu', border_mode='same')(branch5x5_reduce)
branch_pool = MaxPooling3D(pool_size=(2, 2, 2), strides=(1, 1, 1), border_mode='same')(m)
branch_pool_proj = Convolution3D(32, 1, 1, 1, subsample=(1, 1, 1), activation='relu', border_mode='same')(branch_pool)
#m = merge([branch1x1, branch3x3, branch5x5, branch_pool_proj], mode='concat', concat_axis=-1)
from keras.layers import concatenate
m = concatenate([branch1x1, branch3x3, branch5x5, branch_pool_proj],axis=-1)
m = AveragePooling3D(pool_size=(2, 2, 2), strides=(1, 1, 1), border_mode='valid')(m)
m = Flatten()(m)
m = Dropout(0.7)(m)
# expliciately seperate Dense and Activation layers in order for projecting to structural feature space
m = Dense(num_labels, activation='linear')(m)
m = Activation('softmax')(m)
mod = KM.Model(input=inputs, output=m)
return mod
示例6: define_model
# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import Convolution3D [as 别名]
def define_model(image_shape):
img_input = Input(shape=image_shape)
x = Convolution3D(16, 3, 3, 3, subsample=(1, 1, 1), border_mode='same')(img_input)
x = res_block(x, nb_filters=16, block=0, subsample_factor=1)
x = res_block(x, nb_filters=16, block=0, subsample_factor=1)
x = res_block(x, nb_filters=16, block=0, subsample_factor=1)
x = res_block(x, nb_filters=32, block=1, subsample_factor=2)
x = res_block(x, nb_filters=32, block=1, subsample_factor=1)
x = res_block(x, nb_filters=32, block=1, subsample_factor=1)
x = res_block(x, nb_filters=64, block=2, subsample_factor=2)
x = res_block(x, nb_filters=64, block=2, subsample_factor=1)
x = res_block(x, nb_filters=64, block=2, subsample_factor=1)
x = res_block(x, nb_filters=64, block=2, subsample_factor=1)
x = res_block(x, nb_filters=128, block=3, subsample_factor=2)
x = res_block(x, nb_filters=128, block=3, subsample_factor=1)
x = res_block(x, nb_filters=128, block=3, subsample_factor=1)
x = res_block(x, nb_filters=128, block=3, subsample_factor=1)
x = res_block(x, nb_filters=256, block=4, subsample_factor=2)
x = res_block(x, nb_filters=256, block=4, subsample_factor=1)
x = res_block(x, nb_filters=256, block=4, subsample_factor=1)
x = res_block(x, nb_filters=256, block=4, subsample_factor=1)
x = BatchNormalization(axis=4)(x)
x = Activation('relu')(x)
x = AveragePooling3D(pool_size=(3, 3, 3), strides=(2, 2, 2), border_mode='valid')(x)
x = Flatten()(x)
x = Dense(1, activation='sigmoid', name='predictions')(x)
model = Model(img_input, x)
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy', 'precision', 'recall', 'fmeasure'])
model.summary()
return model
示例7: define_model
# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import Convolution3D [as 别名]
def define_model(image_shape):
img_input = Input(shape=image_shape)
x = Convolution3D(16, 5, 5, 5, subsample=(1, 1, 1), border_mode='same')(img_input)
x = res_block(x, nb_filters=16, block=0, subsample_factor=1)
x = res_block(x, nb_filters=16, block=0, subsample_factor=1)
x = res_block(x, nb_filters=16, block=0, subsample_factor=1)
x = res_block(x, nb_filters=32, block=1, subsample_factor=2)
x = res_block(x, nb_filters=32, block=1, subsample_factor=1)
x = res_block(x, nb_filters=32, block=1, subsample_factor=1)
x = res_block(x, nb_filters=64, block=2, subsample_factor=2)
x = res_block(x, nb_filters=64, block=2, subsample_factor=1)
x = res_block(x, nb_filters=64, block=2, subsample_factor=1)
x = res_block(x, nb_filters=128, block=3, subsample_factor=2)
x = res_block(x, nb_filters=128, block=3, subsample_factor=1)
x = res_block(x, nb_filters=128, block=3, subsample_factor=1)
x = BatchNormalization(axis=4)(x)
x = Activation('relu')(x)
x = AveragePooling3D(pool_size=(4, 4, 8))(x)
x = Flatten()(x)
x = Dense(1, activation='sigmoid', name='predictions')(x)
model = Model(img_input, x)
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy', 'precision', 'recall', 'fmeasure'])
model.summary()
return model
示例8: define_model
# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import Convolution3D [as 别名]
def define_model():
img_input = Input(shape=(32, 32, 64, 1))
x = Convolution3D(16, 5, 5, 5, subsample=(1, 1, 1), border_mode='same')(img_input)
x = res_block(x, nb_filters=16, block=0, subsample_factor=1)
x = res_block(x, nb_filters=16, block=0, subsample_factor=1)
x = res_block(x, nb_filters=16, block=0, subsample_factor=1)
x = res_block(x, nb_filters=32, block=1, subsample_factor=2)
x = res_block(x, nb_filters=32, block=1, subsample_factor=1)
x = res_block(x, nb_filters=32, block=1, subsample_factor=1)
x = res_block(x, nb_filters=64, block=2, subsample_factor=2)
x = res_block(x, nb_filters=64, block=2, subsample_factor=1)
x = res_block(x, nb_filters=64, block=2, subsample_factor=1)
x = res_block(x, nb_filters=128, block=3, subsample_factor=2)
x = res_block(x, nb_filters=128, block=3, subsample_factor=1)
x = res_block(x, nb_filters=128, block=3, subsample_factor=1)
x = BatchNormalization(axis=4)(x)
x = Activation('relu')(x)
x = AveragePooling3D(pool_size=(4, 4, 8))(x)
x = Flatten()(x)
x = Dense(1, activation='sigmoid', name='predictions')(x)
model = Model(img_input, x)
model.compile(optimizer='adam', loss='binary_crossentropy')
return model
示例9: build
# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import Convolution3D [as 别名]
def build():
model = Sequential()
# Conv layer 1
model.add(Convolution3D(
input_shape = (14,32,32,32),
filters=64,
kernel_size=5,
padding='valid', # Padding method
data_format='channels_first',
))
model.add(LeakyReLU(alpha = 0.1))
# Dropout 1
model.add(Dropout(0.2))
# Conv layer 2
model.add(Convolution3D(
filters=64,
kernel_size=3,
padding='valid', # Padding method
data_format='channels_first',
))
model.add(LeakyReLU(alpha = 0.1))
# Maxpooling 1
model.add(MaxPooling3D(
pool_size=(2,2,2),
strides=None,
padding='valid', # Padding method
data_format='channels_first'
))
# Dropout 2
model.add(Dropout(0.4))
# FC 1
model.add(Flatten())
model.add(Dense(128)) # TODO changed to 64 for the CAM
model.add(LeakyReLU(alpha = 0.1))
# Dropout 3
model.add(Dropout(0.4))
# Fully connected layer 2 to shape (2) for 2 classes
model.add(Dense(2))
model.add(Activation('softmax'))
return model
示例10: srcnn
# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import Convolution3D [as 别名]
def srcnn(input_shape=(33,33,110,1)):
#for ROSIS sensor
model = Sequential()
model.add(Convolution3D(64, 9, 9, 7, input_shape=input_shape, activation='relu'))
model.add(Convolution3D(32, 1, 1, 1, activation='relu'))
model.add(Convolution3D(9, 1, 1, 1, activation='relu'))
model.add(Convolution3D(1, 5, 5, 3))
model.compile(Adam(lr=0.00005), 'mse')
return model
开发者ID:MeiShaohui,项目名称:Hyperspectral-Image-Spatial-Super-Resolution-via-3D-Full-Convolutional-Neural-Network,代码行数:11,代码来源:network3d.py
示例11: auto_classifier_model
# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import Convolution3D [as 别名]
def auto_classifier_model(img_shape, encoding_dim=128, NUM_CHANNELS=1, num_of_class=2):
input_shape = (None, img_shape[0], img_shape[1], img_shape[2], NUM_CHANNELS)
mask_shape = (None, num_of_class)
# use relu activation for hidden layer to guarantee non-negative outputs are passed to the max pooling layer. In such case, as long as the output layer is linear activation, the network can still accomodate negative image intendities, just matter of shift back using the bias term
input_img = Input(shape=input_shape[1:])
mask = Input(shape=mask_shape[1:])
x = input_img
x = conv_block(x, 32, 3, 3, 3)
x = MaxPooling3D((2, 2, 2), padding ='same')(x)
x = conv_block(x, 32, 3, 3, 3)
x = MaxPooling3D((2, 2, 2), padding ='same')(x)
encoder_conv_shape = [_.value for _ in x.get_shape()] # x.get_shape() returns a list of tensorflow.python.framework.tensor_shape.Dimension objects
x = Flatten()(x)
encoded = Dense(encoding_dim, activation='relu', activity_regularizer=regularizers.l1(10e-5))(x)
encoder = Model(inputs=input_img, outputs=encoded)
x = BatchNormalization()(x)
x = Dense(encoding_dim, activation='relu', activity_regularizer=regularizers.l1(10e-5))(x)
x = Dense(128, activation = 'relu')(x)
x = Dense(num_of_class, activation = 'softmax')(x)
prob = x
# classifier output
classifier = Model(inputs=input_img, outputs=prob)
input_img_decoder = Input(shape=encoder.output_shape[1:])
x = input_img_decoder
x = Dense(np.prod(encoder_conv_shape[1:]), activation='relu')(x)
x = Reshape(encoder_conv_shape[1:])(x)
x = UpSampling3D((2, 2, 2))(x)
x = conv_block(x, 32, 3, 3, 3)
x = UpSampling3D((2, 2, 2))(x)
x = conv_block(x, 32, 3, 3, 3)
x = Convolution3D(1, (3, 3, 3), activation='linear', padding ='same')(x)
decoded = x
# autoencoder output
decoder = Model(inputs=input_img_decoder, outputs=decoded)
autoencoder = Sequential()
for l in encoder.layers:
autoencoder.add(l)
last = None
for l in decoder.layers:
last = l
autoencoder.add(l)
decoded = autoencoder(input_img)
auto_classifier = Model(inputs=input_img, outputs=[decoded, prob])
auto_classifier.summary()
return auto_classifier
示例12: get_net
# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import Convolution3D [as 别名]
def get_net(input_shape=(CUBE_SIZE, CUBE_SIZE, CUBE_SIZE, 1), load_weight_path=None, features=False, mal=False) -> Model:
inputs = Input(shape=input_shape, name="input_1")
x = inputs
x = AveragePooling3D(pool_size=(2, 1, 1), strides=(2, 1, 1), border_mode="same")(x)
x = Convolution3D(64, 3, 3, 3, activation='relu', border_mode='same', name='conv1', subsample=(1, 1, 1))(x)
x = MaxPooling3D(pool_size=(1, 2, 2), strides=(1, 2, 2), border_mode='valid', name='pool1')(x)
# 2nd layer group
x = Convolution3D(128, 3, 3, 3, activation='relu', border_mode='same', name='conv2', subsample=(1, 1, 1))(x)
x = MaxPooling3D(pool_size=(2, 2, 2), strides=(2, 2, 2), border_mode='valid', name='pool2')(x)
if USE_DROPOUT:
x = Dropout(p=0.3)(x)
# 3rd layer group
x = Convolution3D(256, 3, 3, 3, activation='relu', border_mode='same', name='conv3a', subsample=(1, 1, 1))(x)
x = Convolution3D(256, 3, 3, 3, activation='relu', border_mode='same', name='conv3b', subsample=(1, 1, 1))(x)
x = MaxPooling3D(pool_size=(2, 2, 2), strides=(2, 2, 2), border_mode='valid', name='pool3')(x)
if USE_DROPOUT:
x = Dropout(p=0.4)(x)
# 4th layer group
x = Convolution3D(512, 3, 3, 3, activation='relu', border_mode='same', name='conv4a', subsample=(1, 1, 1))(x)
x = Convolution3D(512, 3, 3, 3, activation='relu', border_mode='same', name='conv4b', subsample=(1, 1, 1),)(x)
x = MaxPooling3D(pool_size=(2, 2, 2), strides=(2, 2, 2), border_mode='valid', name='pool4')(x)
if USE_DROPOUT:
x = Dropout(p=0.5)(x)
last64 = Convolution3D(64, 2, 2, 2, activation="relu", name="last_64")(x)
out_class = Convolution3D(1, 1, 1, 1, activation="sigmoid", name="out_class_last")(last64)
out_class = Flatten(name="out_class")(out_class)
out_malignancy = Convolution3D(1, 1, 1, 1, activation=None, name="out_malignancy_last")(last64)
out_malignancy = Flatten(name="out_malignancy")(out_malignancy)
model = Model(input=inputs, output=[out_class, out_malignancy])
if load_weight_path is not None:
model.load_weights(load_weight_path, by_name=False)
model.compile(optimizer=SGD(lr=LEARN_RATE, momentum=0.9, nesterov=True), loss={"out_class": "binary_crossentropy", "out_malignancy": mean_absolute_error}, metrics={"out_class": [binary_accuracy, binary_crossentropy], "out_malignancy": mean_absolute_error})
if features:
model = Model(input=inputs, output=[last64])
model.summary(line_length=140)
return model
示例13: build
# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import Convolution3D [as 别名]
def build(video_shape, audio_spectrogram_size):
model = Sequential()
model.add(ZeroPadding3D(padding=(1, 2, 2), name='zero1', input_shape=video_shape))
model.add(Convolution3D(32, (3, 5, 5), strides=(1, 2, 2), kernel_initializer='he_normal', name='conv1'))
model.add(BatchNormalization())
model.add(LeakyReLU())
model.add(MaxPooling3D(pool_size=(1, 2, 2), strides=(1, 2, 2), name='max1'))
model.add(Dropout(0.25))
model.add(ZeroPadding3D(padding=(1, 2, 2), name='zero2'))
model.add(Convolution3D(64, (3, 5, 5), strides=(1, 1, 1), kernel_initializer='he_normal', name='conv2'))
model.add(BatchNormalization())
model.add(LeakyReLU())
model.add(MaxPooling3D(pool_size=(1, 2, 2), strides=(1, 2, 2), name='max2'))
model.add(Dropout(0.25))
model.add(ZeroPadding3D(padding=(1, 1, 1), name='zero3'))
model.add(Convolution3D(128, (3, 3, 3), strides=(1, 1, 1), kernel_initializer='he_normal', name='conv3'))
model.add(BatchNormalization())
model.add(LeakyReLU())
model.add(MaxPooling3D(pool_size=(1, 2, 2), strides=(1, 2, 2), name='max3'))
model.add(Dropout(0.25))
model.add(TimeDistributed(Flatten(), name='time'))
model.add(Dense(1024, kernel_initializer='he_normal', name='dense1'))
model.add(BatchNormalization())
model.add(LeakyReLU())
model.add(Dropout(0.25))
model.add(Dense(1024, kernel_initializer='he_normal', name='dense2'))
model.add(BatchNormalization())
model.add(LeakyReLU())
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(2048, kernel_initializer='he_normal', name='dense3'))
model.add(BatchNormalization())
model.add(LeakyReLU())
model.add(Dropout(0.25))
model.add(Dense(2048, kernel_initializer='he_normal', name='dense4'))
model.add(BatchNormalization())
model.add(LeakyReLU())
model.add(Dropout(0.25))
model.add(Dense(audio_spectrogram_size, name='output'))
model.summary()
return VideoToSpeechNet(model)