当前位置: 首页>>代码示例>>Python>>正文


Python layers.Convolution1D方法代码示例

本文整理汇总了Python中keras.layers.Convolution1D方法的典型用法代码示例。如果您正苦于以下问题:Python layers.Convolution1D方法的具体用法?Python layers.Convolution1D怎么用?Python layers.Convolution1D使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在keras.layers的用法示例。


在下文中一共展示了layers.Convolution1D方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: build_cnn

# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import Convolution1D [as 别名]
def build_cnn(input_shape, output_dim,nb_filter):
    clf = Sequential()
    clf.add(Convolution1D(nb_filter=nb_filter,
                          filter_length=4,border_mode="valid",activation="relu",subsample_length=1,input_shape=input_shape))
    clf.add(GlobalMaxPooling1D())
    clf.add(Dense(100))
    clf.add(Dropout(0.2))
    clf.add(Activation("tanh"))
    clf.add(Dense(output_dim=output_dim, activation='softmax'))

    clf.compile(optimizer='adagrad',
                     loss='categorical_crossentropy',
                     metrics=['accuracy'])
    return clf

# just one filter 
开发者ID:UKPLab,项目名称:semeval2017-scienceie,代码行数:18,代码来源:convNet.py

示例2: build_cnn_char

# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import Convolution1D [as 别名]
def build_cnn_char(input_dim, output_dim,nb_filter):
    clf = Sequential()
    clf.add(Embedding(input_dim,
                      32, # character embedding size
                      input_length=maxlen,
                      dropout=0.2))
    clf.add(Convolution1D(nb_filter=nb_filter,
                          filter_length=3,border_mode="valid",activation="relu",subsample_length=1))
    clf.add(GlobalMaxPooling1D())
    clf.add(Dense(100))
    clf.add(Dropout(0.2))
    clf.add(Activation("tanh"))
    clf.add(Dense(output_dim=output_dim, activation='softmax'))

    clf.compile(optimizer='adagrad',
                     loss='categorical_crossentropy',
                     metrics=['accuracy'])
    return clf

# just one filter 
开发者ID:UKPLab,项目名称:semeval2017-scienceie,代码行数:22,代码来源:convNet.py

示例3: build

# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import Convolution1D [as 别名]
def build(self, input_shape):
        # We define convolution, maxpooling and dense layers first.
        self.convolution_layers = [Convolution1D(filters=self.num_filters,
                                                 kernel_size=ngram_size,
                                                 activation=self.conv_layer_activation,
                                                 kernel_regularizer=self.regularizer(),
                                                 bias_regularizer=self.regularizer())
                                   for ngram_size in self.ngram_filter_sizes]
        self.projection_layer = Dense(self.output_dim)
        # Building all layers because these sub-layers are not explitly part of the computatonal graph.
        for convolution_layer in self.convolution_layers:
            with K.name_scope(convolution_layer.name):
                convolution_layer.build(input_shape)
        maxpool_output_dim = self.num_filters * len(self.ngram_filter_sizes)
        projection_input_shape = (input_shape[0], maxpool_output_dim)
        with K.name_scope(self.projection_layer.name):
            self.projection_layer.build(projection_input_shape)
        # Defining the weights of this "layer" as the set of weights from all convolution
        # and maxpooling layers.
        self.trainable_weights = []
        for layer in self.convolution_layers + [self.projection_layer]:
            self.trainable_weights.extend(layer.trainable_weights)

        super(CNNEncoder, self).build(input_shape) 
开发者ID:allenai,项目名称:deep_qa,代码行数:26,代码来源:convolutional_encoder.py

示例4: ConvolutionLayer

# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import Convolution1D [as 别名]
def ConvolutionLayer(input_shape, n_classes, filter_sizes=[2, 3, 4, 5], num_filters=20, word_trainable=False, vocab_sz=None,
                     embedding_matrix=None, word_embedding_dim=100, hidden_dim=20, act='relu', init='ones'):
    x = Input(shape=(input_shape,), name='input')
    z = Embedding(vocab_sz, word_embedding_dim, input_length=(input_shape,), name="embedding", 
                    weights=[embedding_matrix], trainable=word_trainable)(x)
    conv_blocks = []
    for sz in filter_sizes:
        conv = Convolution1D(filters=num_filters,
                             kernel_size=sz,
                             padding="valid",
                             activation=act,
                             strides=1,
                             kernel_initializer=init)(z)
        conv = GlobalMaxPooling1D()(conv)
        conv_blocks.append(conv)
    z = Concatenate()(conv_blocks) if len(conv_blocks) > 1 else conv_blocks[0]
    z = Dense(hidden_dim, activation="relu")(z)
    y = Dense(n_classes, activation="softmax")(z)
    return Model(inputs=x, outputs=y, name='classifier') 
开发者ID:yumeng5,项目名称:WeSTClass,代码行数:21,代码来源:model.py

示例5: ConvolutionLayer

# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import Convolution1D [as 别名]
def ConvolutionLayer(x, input_shape, n_classes, filter_sizes=[2, 3, 4, 5], num_filters=20, word_trainable=False,
                     vocab_sz=None,
                     embedding_matrix=None, word_embedding_dim=100, hidden_dim=100, act='relu', init='ones'):
    if embedding_matrix is not None:
        z = Embedding(vocab_sz, word_embedding_dim, input_length=(input_shape,),
                      weights=[embedding_matrix], trainable=word_trainable)(x)
    else:
        z = Embedding(vocab_sz, word_embedding_dim, input_length=(input_shape,), trainable=word_trainable)(x)
    conv_blocks = []
    for sz in filter_sizes:
        conv = Convolution1D(filters=num_filters,
                             kernel_size=sz,
                             padding="valid",
                             activation=act,
                             strides=1,
                             kernel_initializer=init)(z)
        conv = GlobalMaxPooling1D()(conv)
        conv_blocks.append(conv)
    z = Concatenate()(conv_blocks) if len(conv_blocks) > 1 else conv_blocks[0]
    z = Dense(hidden_dim, activation="relu")(z)
    y = Dense(n_classes, activation="softmax")(z)
    return Model(inputs=x, outputs=y) 
开发者ID:yumeng5,项目名称:WeSHClass,代码行数:24,代码来源:models.py

示例6: __init__

# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import Convolution1D [as 别名]
def __init__(self):
        from keras.preprocessing import sequence
        from keras.models import load_model
        from keras.models import Sequential
        from keras.preprocessing import sequence
        from keras.layers import Dense, Dropout, Activation, Lambda, Input, merge, Flatten
        from keras.layers import Embedding
        from keras.layers import Convolution1D, MaxPooling1D
        from keras import backend as K
        from keras.models import Model
        from keras.regularizers import l2
        global sequence, load_model, Sequential, Dense, Dropout, Activation, Lambda, Input, merge, Flatten
        global Embedding, Convolution1D, MaxPooling1D, K, Model, l2
        self.svm_clf = MiniClassifier(os.path.join(robotreviewer.DATA_ROOT, 'rct/rct_svm_weights.npz'))
        cnn_weight_files = glob.glob(os.path.join(robotreviewer.DATA_ROOT, 'rct/*.h5'))
        self.cnn_clfs = [load_model(cnn_weight_file) for cnn_weight_file in cnn_weight_files]
        self.svm_vectorizer = HashingVectorizer(binary=False, ngram_range=(1, 1), stop_words='english')
        self.cnn_vectorizer = KerasVectorizer(vocab_map_file=os.path.join(robotreviewer.DATA_ROOT, 'rct/cnn_vocab_map.pck'), stop_words='english')
        with open(os.path.join(robotreviewer.DATA_ROOT, 'rct/rct_model_calibration.json'), 'r') as f:
            self.constants = json.load(f)

        self.calibration_lr = {}
        with open(os.path.join(robotreviewer.DATA_ROOT, 'rct/svm_cnn_ptyp_calibration.pck'), 'rb') as f:
            self.calibration_lr['svm_cnn_ptyp'] = pickle.load(f)

        with open(os.path.join(robotreviewer.DATA_ROOT, 'rct/svm_cnn_calibration.pck'), 'rb') as f:
            self.calibration_lr['svm_cnn'] = pickle.load(f) 
开发者ID:ijmarshall,项目名称:robotreviewer,代码行数:29,代码来源:rct_robot.py

示例7: cnn_model

# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import Convolution1D [as 别名]
def cnn_model(max_len=400,
              vocabulary_size=20000,
              embedding_dim=128,
              hidden_dim=128,
              num_filters=512,
              filter_sizes="3,4,5",
              num_classses=4,
              dropout=0.5):
    print("Creating text CNN Model...")
    # a tensor
    inputs = Input(shape=(max_len,), dtype='int32')
    # emb
    embedding = Embedding(input_dim=vocabulary_size, output_dim=embedding_dim,
                          input_length=max_len, name="embedding")(inputs)
    # convolution block
    if "," in filter_sizes:
        filter_sizes = filter_sizes.split(",")
    else:
        filter_sizes = [3, 4, 5]
    conv_blocks = []
    for sz in filter_sizes:
        conv = Convolution1D(filters=num_filters,
                             kernel_size=int(sz),
                             strides=1,
                             padding='valid',
                             activation='relu')(embedding)
        conv = MaxPooling1D()(conv)
        conv = Flatten()(conv)
        conv_blocks.append(conv)
    conv_concate = Concatenate()(conv_blocks) if len(conv_blocks) > 1 else conv_blocks[0]
    dropout_layer = Dropout(dropout)(conv_concate)
    output = Dense(hidden_dim, activation='relu')(dropout_layer)
    output = Dense(num_classses, activation='softmax')(output)
    # model
    model = Model(inputs=inputs, outputs=output)
    model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
    model.summary()
    return model 
开发者ID:shibing624,项目名称:text-classifier,代码行数:40,代码来源:deep_model.py

示例8: create_model

# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import Convolution1D [as 别名]
def create_model(self, hyper_parameters):
        """
            构建神经网络
        :param hyper_parameters:json,  hyper parameters of network
        :return: tensor, moedl
        """
        super().create_model(hyper_parameters)
        x = self.word_embedding.output
        # x = Reshape((self.len_max, self.embed_size, 1))(embedding_output) # (None, 50, 30, 1)
        # cnn + pool
        for char_cnn_size in self.char_cnn_layers:
            x = Convolution1D(filters = char_cnn_size[0],
                              kernel_size = char_cnn_size[1],)(x)
            x = ThresholdedReLU(self.threshold)(x)
            if char_cnn_size[2] != -1:
                x = MaxPooling1D(pool_size = char_cnn_size[2],
                                 strides = 1)(x)
        x = Flatten()(x)
        # full-connect
        for full in self.full_connect_layers:
            x = Dense(units=full,)(x)
            x = ThresholdedReLU(self.threshold)(x)
            x = Dropout(self.dropout)(x)
        output = Dense(units=self.label, activation=self.activate_classify)(x)
        self.model = Model(inputs=self.word_embedding.input, outputs=output)
        self.model.summary(120) 
开发者ID:yongzhuo,项目名称:Keras-TextClassification,代码行数:28,代码来源:graph_zhang.py

示例9: test_conv1d_lstm

# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import Convolution1D [as 别名]
def test_conv1d_lstm(self):
        from keras.layers import Convolution1D, LSTM, Dense

        model = Sequential()
        # input_shape = (time_step, dimensions)
        model.add(Convolution1D(32, 3, border_mode="same", input_shape=(10, 8)))
        # conv1d output shape = (None, 10, 32)
        model.add(LSTM(24))
        model.add(Dense(1, activation="sigmoid"))
        print("model.layers[1].output_shape=", model.layers[1].output_shape)

        input_names = ["input"]
        output_names = ["output"]
        spec = keras.convert(model, input_names, output_names).get_spec()

        self.assertIsNotNone(spec)
        self.assertTrue(spec.HasField("neuralNetwork"))

        # Test the inputs and outputs
        self.assertEquals(len(spec.description.input), len(input_names))
        six.assertCountEqual(
            self, input_names, [x.name for x in spec.description.input]
        )
        self.assertEquals(len(spec.description.output), len(output_names))
        six.assertCountEqual(
            self, output_names, [x.name for x in spec.description.output]
        )

        # Test the layer parameters.
        layers = spec.neuralNetwork.layers
        self.assertIsNotNone(layers[0].convolution)
        self.assertIsNotNone(layers[1].simpleRecurrent)
        self.assertIsNotNone(layers[2].innerProduct) 
开发者ID:apple,项目名称:coremltools,代码行数:35,代码来源:test_keras.py

示例10: PLayer

# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import Convolution1D [as 别名]
def PLayer(self, size, filters, activation, initializer, regularizer_param):
        def f(input):
            # model_p = Convolution1D(filters=filters, kernel_size=size, padding='valid', activity_regularizer=l2(regularizer_param), kernel_initializer=initializer, kernel_regularizer=l2(regularizer_param))(input)
            model_p = Convolution1D(filters=filters, kernel_size=size, padding='same', kernel_initializer=initializer, kernel_regularizer=l2(regularizer_param))(input)
            model_p = BatchNormalization()(model_p)
            model_p = Activation(activation)(model_p)
            return GlobalMaxPooling1D()(model_p)
        return f 
开发者ID:GIST-CSBL,项目名称:DeepConv-DTI,代码行数:10,代码来源:DeepConvDTI.py

示例11: build_cnn_char_complex

# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import Convolution1D [as 别名]
def build_cnn_char_complex(input_dim, output_dim,nb_filter):
    randomEmbeddingLayer = Embedding(input_dim,32, input_length=maxlen,dropout=0.1)
    poolingLayer = Lambda(max_1d, output_shape=(nb_filter,))
    conv_filters = []
    for n_gram in range(2,4):
        ngramModel = Sequential()
        ngramModel.add(randomEmbeddingLayer)
        ngramModel.add(Convolution1D(nb_filter=nb_filter,
                                     filter_length=n_gram,
                                     border_mode="valid",
                                     activation="relu",
                                     subsample_length=1))
        ngramModel.add(poolingLayer)
        conv_filters.append(ngramModel)
    
    clf = Sequential()
    clf.add(Merge(conv_filters,mode="concat"))
    clf.add(Activation("relu"))
    clf.add(Dense(100))
    clf.add(Dropout(0.1))
    clf.add(Activation("tanh"))
    clf.add(Dense(output_dim=output_dim, activation='softmax'))

    clf.compile(optimizer='adagrad',
                     loss='categorical_crossentropy',
                     metrics=['accuracy'])
    return clf 
开发者ID:UKPLab,项目名称:semeval2017-scienceie,代码行数:29,代码来源:convNet.py

示例12: build_lstm

# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import Convolution1D [as 别名]
def build_lstm(output_dim, embeddings):

    loss_function = "categorical_crossentropy"

    # this is the placeholder tensor for the input sequences
    sequence = Input(shape=(MAX_SEQUENCE_LENGTH,), dtype="int32")

    # this embedding layer will transform the sequences of integers
    embedded = Embedding(embeddings.shape[0], embeddings.shape[1], input_length=MAX_SEQUENCE_LENGTH, weights=[embeddings], trainable=True)(sequence)

    # 4 convolution layers (each 1000 filters)
    cnn = [Convolution1D(filter_length=filters, nb_filter=1000, border_mode="same") for filters in [2, 3, 5, 7]]
    # concatenate
    merged_cnn = merge([cnn(embedded) for cnn in cnn], mode="concat")
    # create attention vector from max-pooled convoluted
    maxpool = Lambda(lambda x: keras_backend.max(x, axis=1, keepdims=False), output_shape=lambda x: (x[0], x[2]))
    attention_vector = maxpool(merged_cnn)

    forwards = AttentionLSTM(64, attention_vector)(embedded)
    backwards = AttentionLSTM(64, attention_vector, go_backwards=True)(embedded)

    # concatenate the outputs of the 2 LSTM layers
    bi_lstm = merge([forwards, backwards], mode="concat", concat_axis=-1)

    after_dropout = Dropout(0.5)(bi_lstm)

    # softmax output layer
    output = Dense(output_dim=output_dim, activation="softmax")(after_dropout)

    # the complete omdel
    model = Model(input=sequence, output=output)

    # try using different optimizers and different optimizer configs
    model.compile("adagrad", loss_function, metrics=["accuracy"])

    return model 
开发者ID:UKPLab,项目名称:semeval2017-scienceie,代码行数:38,代码来源:blstm.py

示例13: get_model_4

# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import Convolution1D [as 别名]
def get_model_4(params):
    embedding_weights = pickle.load(open(common.TRAINDATA_DIR+"/embedding_weights_w2v_%s.pk" % params['embeddings_suffix'],"rb"))
    graph_in = Input(shape=(params['sequence_length'], params['embedding_dim']))
    convs = []
    for fsz in params['filter_sizes']:
        conv = Convolution1D(nb_filter=params['num_filters'],
                             filter_length=fsz,
                             border_mode='valid',
                             activation='relu',
                             subsample_length=1)
        x = conv(graph_in)
        logging.debug("Filter size: %s" % fsz)
        logging.debug("Output CNN: %s" % str(conv.output_shape))

        pool = GlobalMaxPooling1D()
        x = pool(x)
        logging.debug("Output Pooling: %s" % str(pool.output_shape))
        convs.append(x)

    if len(params['filter_sizes'])>1:
        merge = Merge(mode='concat')
        out = merge(convs)
        logging.debug("Merge: %s" % str(merge.output_shape))
    else:
        out = convs[0]

    graph = Model(input=graph_in, output=out)

    # main sequential model
    model = Sequential()
    if not params['model_variation']=='CNN-static':
        model.add(Embedding(len(embedding_weights[0]), params['embedding_dim'], input_length=params['sequence_length'],
                            weights=embedding_weights))
    model.add(Dropout(params['dropout_prob'][0], input_shape=(params['sequence_length'], params['embedding_dim'])))
    model.add(graph)
    model.add(Dense(params['n_dense']))
    model.add(Dropout(params['dropout_prob'][1]))
    model.add(Activation('relu'))

    model.add(Dense(output_dim=params["n_out"], init="uniform"))
    model.add(Activation(params['final_activation']))
    logging.debug("Output CNN: %s" % str(model.output_shape))

    if params['final_activation'] == 'linear':
        model.add(Lambda(lambda x :K.l2_normalize(x, axis=1)))

    return model

# word2vec ARCH with LSTM 
开发者ID:sergiooramas,项目名称:tartarus,代码行数:51,代码来源:models.py

示例14: create_default_model

# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import Convolution1D [as 别名]
def create_default_model(config_data):
    nb_filter = 200
    filter_length = 6
    hidden_dims = nb_filter

    embedding_matrix = load_embedding_matrix(config_data)
    max_features = embedding_matrix.shape[0]
    embedding_dims = embedding_matrix.shape[1]

    max_len = config_data['max_sentence_length']

    logging.info('Build Model...')
    logging.info('Embedding Dimensions: ({},{})'.format(max_features, embedding_dims))

    main_input = Input(batch_shape=(None, max_len), dtype='int32', name='main_input')
    if not config_data.get('random_embedding', None):
        logging.info('Pretrained Word Embeddings')
        embeddings = Embedding(
            max_features,
            embedding_dims,
            input_length=max_len,
            weights=[embedding_matrix],
            trainable=False
        )(main_input)
    else:
        logging.info('Random Word Embeddings')
        embeddings = Embedding(max_features, embedding_dims, init='lecun_uniform', input_length=max_len)(main_input)

    zeropadding = ZeroPadding1D(filter_length - 1)(embeddings)

    conv1 = Convolution1D(
        nb_filter=nb_filter,
        filter_length=filter_length,
        border_mode='valid',
        activation='relu',
        subsample_length=1)(zeropadding)

    max_pooling1 = MaxPooling1D(pool_length=4, stride=2)(conv1)

    conv2 = Convolution1D(
        nb_filter=nb_filter,
        filter_length=filter_length,
        border_mode='valid',
        activation='relu',
        subsample_length=1)(max_pooling1)

    max_pooling2 = MaxPooling1D(pool_length=conv2._keras_shape[1])(conv2)
    flatten = Flatten()(max_pooling2)
    hidden = Dense(hidden_dims)(flatten)
    softmax_layer1 = Dense(3, activation='softmax', name='sentiment_softmax', init='lecun_uniform')(hidden)

    model = Model(input=[main_input], output=softmax_layer1)

    test_model = Model(input=[main_input], output=[softmax_layer1, hidden])

    return model, test_model 
开发者ID:spinningbytes,项目名称:deep-mlsa,代码行数:58,代码来源:default_cnn.py

示例15: create_cnn

# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import Convolution1D [as 别名]
def create_cnn(W, max_length, dim=300,
               dropout=.5, output_dim=8):

    # Convolutional model
    filter_sizes=(2,3,4)
    num_filters = 3
   

    graph_in = Input(shape=(max_length, len(W[0])))
    convs = []
    for fsz in filter_sizes:
        conv = Convolution1D(nb_filter=num_filters,
                 filter_length=fsz,
                 border_mode='valid',
                 activation='relu',
                 subsample_length=1)(graph_in)
        pool = MaxPooling1D(pool_length=2)(conv)
        flatten = Flatten()(pool)
        convs.append(flatten)
        
    out = Merge(mode='concat')(convs)
    graph = Model(input=graph_in, output=out)

    # Full model
    model = Sequential()
    model.add(Embedding(output_dim=W.shape[1],
                        input_dim=W.shape[0],
                        input_length=max_length, weights=[W],
                        trainable=True))
    model.add(Dropout(dropout))
    model.add(graph)
    model.add(Dense(dim, activation='relu'))
    model.add(Dropout(dropout))
    model.add(Dense(output_dim, activation='softmax'))
    if output_dim == 2:
        model.compile('adam', 'binary_crossentropy',
                  metrics=['accuracy'])
    else:
        model.compile('adam', 'categorical_crossentropy',
                  metrics=['accuracy'])
    return model

    return model 
开发者ID:Artaches,项目名称:SSAN-self-attention-sentiment-analysis-classification,代码行数:45,代码来源:cnn.py


注:本文中的keras.layers.Convolution1D方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。