本文整理汇总了Python中keras.layers.BatchNormalization方法的典型用法代码示例。如果您正苦于以下问题:Python layers.BatchNormalization方法的具体用法?Python layers.BatchNormalization怎么用?Python layers.BatchNormalization使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类keras.layers
的用法示例。
在下文中一共展示了layers.BatchNormalization方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: CausalCNN
# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import BatchNormalization [as 别名]
def CausalCNN(n_filters, lr, decay, loss,
seq_len, input_features,
strides_len, kernel_size,
dilation_rates):
inputs = Input(shape=(seq_len, input_features), name='input_layer')
x=inputs
for dilation_rate in dilation_rates:
x = Conv1D(filters=n_filters,
kernel_size=kernel_size,
padding='causal',
dilation_rate=dilation_rate,
activation='linear')(x)
x = BatchNormalization()(x)
x = Activation('relu')(x)
#x = Dense(7, activation='relu', name='dense_layer')(x)
outputs = Dense(3, activation='sigmoid', name='output_layer')(x)
causalcnn = Model(inputs, outputs=[outputs])
return causalcnn
示例2: build_generator
# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import BatchNormalization [as 别名]
def build_generator(self):
model = Sequential()
model.add(Dense(128 * 7 * 7, activation="relu", input_dim=self.latent_dim))
model.add(Reshape((7, 7, 128)))
model.add(BatchNormalization(momentum=0.8))
model.add(UpSampling2D())
model.add(Conv2D(128, kernel_size=3, padding="same"))
model.add(Activation("relu"))
model.add(BatchNormalization(momentum=0.8))
model.add(UpSampling2D())
model.add(Conv2D(64, kernel_size=3, padding="same"))
model.add(Activation("relu"))
model.add(BatchNormalization(momentum=0.8))
model.add(Conv2D(1, kernel_size=3, padding="same"))
model.add(Activation("tanh"))
model.summary()
noise = Input(shape=(self.latent_dim,))
img = model(noise)
return Model(noise, img)
示例3: build_discriminator
# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import BatchNormalization [as 别名]
def build_discriminator(self):
model = Sequential()
model.add(Conv2D(64, kernel_size=3, strides=2, input_shape=self.missing_shape, padding="same"))
model.add(LeakyReLU(alpha=0.2))
model.add(BatchNormalization(momentum=0.8))
model.add(Conv2D(128, kernel_size=3, strides=2, padding="same"))
model.add(LeakyReLU(alpha=0.2))
model.add(BatchNormalization(momentum=0.8))
model.add(Conv2D(256, kernel_size=3, padding="same"))
model.add(LeakyReLU(alpha=0.2))
model.add(BatchNormalization(momentum=0.8))
model.add(Flatten())
model.add(Dense(1, activation='sigmoid'))
model.summary()
img = Input(shape=self.missing_shape)
validity = model(img)
return Model(img, validity)
示例4: build_generator
# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import BatchNormalization [as 别名]
def build_generator(self):
model = Sequential()
model.add(Dense(512, input_dim=self.latent_dim))
model.add(LeakyReLU(alpha=0.2))
model.add(BatchNormalization(momentum=0.8))
model.add(Dense(512))
model.add(LeakyReLU(alpha=0.2))
model.add(BatchNormalization(momentum=0.8))
model.add(Dense(np.prod(self.img_shape), activation='tanh'))
model.add(Reshape(self.img_shape))
model.summary()
z = Input(shape=(self.latent_dim,))
gen_img = model(z)
return Model(z, gen_img)
示例5: build_generator
# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import BatchNormalization [as 别名]
def build_generator(self):
model = Sequential()
model.add(Dense(128 * 7 * 7, activation="relu", input_dim=self.latent_dim))
model.add(Reshape((7, 7, 128)))
model.add(UpSampling2D())
model.add(Conv2D(128, kernel_size=4, padding="same"))
model.add(BatchNormalization(momentum=0.8))
model.add(Activation("relu"))
model.add(UpSampling2D())
model.add(Conv2D(64, kernel_size=4, padding="same"))
model.add(BatchNormalization(momentum=0.8))
model.add(Activation("relu"))
model.add(Conv2D(self.channels, kernel_size=4, padding="same"))
model.add(Activation("tanh"))
model.summary()
noise = Input(shape=(self.latent_dim,))
img = model(noise)
return Model(noise, img)
示例6: build_discriminator
# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import BatchNormalization [as 别名]
def build_discriminator(self):
def d_layer(layer_input, filters, f_size=4, bn=True):
"""Discriminator layer"""
d = Conv2D(filters, kernel_size=f_size, strides=2, padding='same')(layer_input)
d = LeakyReLU(alpha=0.2)(d)
if bn:
d = BatchNormalization(momentum=0.8)(d)
return d
img_A = Input(shape=self.img_shape)
img_B = Input(shape=self.img_shape)
# Concatenate image and conditioning image by channels to produce input
combined_imgs = Concatenate(axis=-1)([img_A, img_B])
d1 = d_layer(combined_imgs, self.df, bn=False)
d2 = d_layer(d1, self.df*2)
d3 = d_layer(d2, self.df*4)
d4 = d_layer(d3, self.df*8)
validity = Conv2D(1, kernel_size=4, strides=1, padding='same')(d4)
return Model([img_A, img_B], validity)
示例7: build_generator
# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import BatchNormalization [as 别名]
def build_generator(self):
model = Sequential()
model.add(Dense(256, input_dim=self.latent_dim))
model.add(LeakyReLU(alpha=0.2))
model.add(BatchNormalization(momentum=0.8))
model.add(Dense(512))
model.add(LeakyReLU(alpha=0.2))
model.add(BatchNormalization(momentum=0.8))
model.add(Dense(1024))
model.add(LeakyReLU(alpha=0.2))
model.add(BatchNormalization(momentum=0.8))
model.add(Dense(np.prod(self.img_shape), activation='tanh'))
model.add(Reshape(self.img_shape))
model.summary()
noise = Input(shape=(self.latent_dim,))
img = model(noise)
return Model(noise, img)
示例8: build_generator
# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import BatchNormalization [as 别名]
def build_generator(self):
model = Sequential()
model.add(Dense(128 * 7 * 7, activation="relu", input_dim=self.latent_dim))
model.add(Reshape((7, 7, 128)))
model.add(UpSampling2D())
model.add(Conv2D(128, kernel_size=3, padding="same"))
model.add(BatchNormalization(momentum=0.8))
model.add(Activation("relu"))
model.add(UpSampling2D())
model.add(Conv2D(64, kernel_size=3, padding="same"))
model.add(BatchNormalization(momentum=0.8))
model.add(Activation("relu"))
model.add(Conv2D(self.channels, kernel_size=3, padding="same"))
model.add(Activation("tanh"))
model.summary()
noise = Input(shape=(self.latent_dim,))
img = model(noise)
return Model(noise, img)
示例9: _initial_conv_block_inception
# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import BatchNormalization [as 别名]
def _initial_conv_block_inception(input, initial_conv_filters, weight_decay=5e-4):
''' Adds an initial conv block, with batch norm and relu for the DPN
Args:
input: input tensor
initial_conv_filters: number of filters for initial conv block
weight_decay: weight decay factor
Returns: a keras tensor
'''
channel_axis = 1 if K.image_data_format() == 'channels_first' else -1
x = Conv2D(initial_conv_filters, (7, 7), padding='same', use_bias=False, kernel_initializer='he_normal',
kernel_regularizer=l2(weight_decay), strides=(2, 2))(input)
x = BatchNormalization(axis=channel_axis)(x)
x = Activation('relu')(x)
x = MaxPooling2D((3, 3), strides=(2, 2), padding='same')(x)
return x
示例10: weather_conv1D
# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import BatchNormalization [as 别名]
def weather_conv1D(layers, lr, decay, loss,
input_len, input_features,
strides_len, kernel_size):
inputs = Input(shape=(input_len, input_features), name='input_layer')
for i, hidden_nums in enumerate(layers):
if i==0:
#inputs = BatchNormalization(name='BN_input')(inputs)
hn = Conv1D(hidden_nums, kernel_size=kernel_size, strides=strides_len,
data_format='channels_last',
padding='same', activation='linear')(inputs)
hn = BatchNormalization(name='BN_{}'.format(i))(hn)
hn = Activation('relu')(hn)
elif i<len(layers)-1:
hn = Conv1D(hidden_nums, kernel_size=kernel_size, strides=strides_len,
data_format='channels_last',
padding='same',activation='linear')(hn)
hn = BatchNormalization(name='BN_{}'.format(i))(hn)
hn = Activation('relu')(hn)
else:
hn = Conv1D(hidden_nums, kernel_size=kernel_size, strides=strides_len,
data_format='channels_last',
padding='same',activation='linear')(hn)
hn = BatchNormalization(name='BN_{}'.format(i))(hn)
outputs = Dense(80, activation='relu', name='dense_layer')(hn)
outputs = Dense(3, activation='tanh', name='output_layer')(outputs)
weather_model = Model(inputs, outputs=[outputs])
return weather_model
示例11: weather_fnn
# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import BatchNormalization [as 别名]
def weather_fnn(layers, lr,
decay, loss, seq_len,
input_features, output_features):
ori_inputs = Input(shape=(seq_len, input_features), name='input_layer')
#print(seq_len*input_features)
conv_ = Conv1D(11, kernel_size=13, strides=1,
data_format='channels_last',
padding='valid', activation='linear')(ori_inputs)
conv_ = BatchNormalization(name='BN_conv')(conv_)
conv_ = Activation('relu')(conv_)
conv_ = Conv1D(5, kernel_size=7, strides=1,
data_format='channels_last',
padding='valid', activation='linear')(conv_)
conv_ = BatchNormalization(name='BN_conv2')(conv_)
conv_ = Activation('relu')(conv_)
inputs = Reshape((-1,))(conv_)
for i, hidden_nums in enumerate(layers):
if i==0:
hn = Dense(hidden_nums, activation='linear')(inputs)
hn = BatchNormalization(name='BN_{}'.format(i))(hn)
hn = Activation('relu')(hn)
else:
hn = Dense(hidden_nums, activation='linear')(hn)
hn = BatchNormalization(name='BN_{}'.format(i))(hn)
hn = Activation('relu')(hn)
#hn = Dropout(0.1)(hn)
#print(seq_len, output_features)
#print(hn)
outputs = Dense(seq_len*output_features, activation='sigmoid', name='output_layer')(hn) # 37*3
outputs = Reshape((seq_len, output_features))(outputs)
weather_fnn = Model(ori_inputs, outputs=[outputs])
return weather_fnn
示例12: _get_model
# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import BatchNormalization [as 别名]
def _get_model(X, cat_cols, num_cols, n_uniq, n_emb, output_activation):
inputs = []
num_inputs = []
embeddings = []
for i, col in enumerate(cat_cols):
if not n_uniq[i]:
n_uniq[i] = X[col].nunique()
if not n_emb[i]:
n_emb[i] = max(MIN_EMBEDDING, 2 * int(np.log2(n_uniq[i])))
_input = Input(shape=(1,), name=col)
_embed = Embedding(input_dim=n_uniq[i], output_dim=n_emb[i], name=col + EMBEDDING_SUFFIX)(_input)
_embed = Dropout(.2)(_embed)
_embed = Reshape((n_emb[i],))(_embed)
inputs.append(_input)
embeddings.append(_embed)
if num_cols:
num_inputs = Input(shape=(len(num_cols),), name='num_inputs')
merged_input = Concatenate(axis=1)(embeddings + [num_inputs])
inputs = inputs + [num_inputs]
else:
merged_input = Concatenate(axis=1)(embeddings)
x = BatchNormalization()(merged_input)
x = Dense(128, activation='relu')(x)
x = Dropout(.5)(x)
x = BatchNormalization()(x)
x = Dense(64, activation='relu')(x)
x = Dropout(.5)(x)
x = BatchNormalization()(x)
output = Dense(1, activation=output_activation)(x)
model = Model(inputs=inputs, outputs=output)
return model, n_emb, n_uniq
示例13: ss_bt
# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import BatchNormalization [as 别名]
def ss_bt(self, x, dilation, strides=(1, 1), padding='same'):
x1, x2 = self.channel_split(x)
filters = (int(x.shape[-1]) // self.groups)
x1 = layers.Conv2D(filters, kernel_size=(3, 1), strides=strides, padding=padding)(x1)
x1 = layers.Activation('relu')(x1)
x1 = layers.Conv2D(filters, kernel_size=(1, 3), strides=strides, padding=padding)(x1)
x1 = layers.BatchNormalization()(x1)
x1 = layers.Activation('relu')(x1)
x1 = layers.Conv2D(filters, kernel_size=(3, 1), strides=strides, padding=padding, dilation_rate=(dilation, 1))(
x1)
x1 = layers.Activation('relu')(x1)
x1 = layers.Conv2D(filters, kernel_size=(1, 3), strides=strides, padding=padding, dilation_rate=(1, dilation))(
x1)
x1 = layers.BatchNormalization()(x1)
x1 = layers.Activation('relu')(x1)
x2 = layers.Conv2D(filters, kernel_size=(1, 3), strides=strides, padding=padding)(x2)
x2 = layers.Activation('relu')(x2)
x2 = layers.Conv2D(filters, kernel_size=(3, 1), strides=strides, padding=padding)(x2)
x2 = layers.BatchNormalization()(x2)
x2 = layers.Activation('relu')(x2)
x2 = layers.Conv2D(filters, kernel_size=(1, 3), strides=strides, padding=padding, dilation_rate=(1, dilation))(
x2)
x2 = layers.Activation('relu')(x2)
x2 = layers.Conv2D(filters, kernel_size=(3, 1), strides=strides, padding=padding, dilation_rate=(dilation, 1))(
x2)
x2 = layers.BatchNormalization()(x2)
x2 = layers.Activation('relu')(x2)
x_concat = layers.concatenate([x1, x2], axis=-1)
x_add = layers.add([x, x_concat])
output = self.channel_shuffle(x_add)
return output
开发者ID:JACKYLUO1991,项目名称:Face-skin-hair-segmentaiton-and-skin-color-evaluation,代码行数:34,代码来源:lednet.py
示例14: down_sample
# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import BatchNormalization [as 别名]
def down_sample(self, x, filters):
x_filters = int(x.shape[-1])
x_conv = layers.Conv2D(filters - x_filters, kernel_size=3, strides=(2, 2), padding='same')(x)
x_pool = layers.MaxPool2D()(x)
x = layers.concatenate([x_conv, x_pool], axis=-1)
x = layers.BatchNormalization()(x)
x = layers.Activation('relu')(x)
return x
开发者ID:JACKYLUO1991,项目名称:Face-skin-hair-segmentaiton-and-skin-color-evaluation,代码行数:10,代码来源:lednet.py
示例15: apn_module
# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import BatchNormalization [as 别名]
def apn_module(self, x):
def right(x):
x = layers.AveragePooling2D()(x)
x = layers.Conv2D(self.classes, kernel_size=1, padding='same')(x)
x = layers.BatchNormalization()(x)
x = layers.Activation('relu')(x)
x = layers.UpSampling2D(interpolation='bilinear')(x)
return x
def conv(x, filters, kernel_size, stride):
x = layers.Conv2D(filters, kernel_size=kernel_size, strides=(stride, stride), padding='same')(x)
x = layers.BatchNormalization()(x)
x = layers.Activation('relu')(x)
return x
x_7 = conv(x, int(x.shape[-1]), 7, stride=2)
x_5 = conv(x_7, int(x.shape[-1]), 5, stride=2)
x_3 = conv(x_5, int(x.shape[-1]), 3, stride=2)
x_3_1 = conv(x_3, self.classes, 3, stride=1)
x_3_1_up = layers.UpSampling2D(interpolation='bilinear')(x_3_1)
x_5_1 = conv(x_5, self.classes, 5, stride=1)
x_3_5 = layers.add([x_5_1, x_3_1_up])
x_3_5_up = layers.UpSampling2D(interpolation='bilinear')(x_3_5)
x_7_1 = conv(x_7, self.classes, 3, stride=1)
x_3_5_7 = layers.add([x_7_1, x_3_5_up])
x_3_5_7_up = layers.UpSampling2D(interpolation='bilinear')(x_3_5_7)
x_middle = conv(x, self.classes, 1, stride=1)
x_middle = layers.multiply([x_3_5_7_up, x_middle])
x_right = right(x)
x_middle = layers.add([x_middle, x_right])
return x_middle
开发者ID:JACKYLUO1991,项目名称:Face-skin-hair-segmentaiton-and-skin-color-evaluation,代码行数:37,代码来源:lednet.py