当前位置: 首页>>代码示例>>Python>>正文


Python layers.ActivityRegularization方法代码示例

本文整理汇总了Python中keras.layers.ActivityRegularization方法的典型用法代码示例。如果您正苦于以下问题:Python layers.ActivityRegularization方法的具体用法?Python layers.ActivityRegularization怎么用?Python layers.ActivityRegularization使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在keras.layers的用法示例。


在下文中一共展示了layers.ActivityRegularization方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_activity_regularization

# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import ActivityRegularization [as 别名]
def test_activity_regularization():
    layer = layers.ActivityRegularization(l1=0.01, l2=0.01)

    # test in functional API
    x = layers.Input(shape=(3,))
    z = layers.Dense(2)(x)
    y = layer(z)
    model = Model(x, y)
    model.compile('rmsprop', 'mse')

    model.predict(np.random.random((2, 3)))

    # test serialization
    model_config = model.get_config()
    model = Model.from_config(model_config)
    model.compile('rmsprop', 'mse') 
开发者ID:hello-sea,项目名称:DeepLearning_Wavelet-LSTM,代码行数:18,代码来源:core_test.py

示例2: create_simnet_network

# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import ActivityRegularization [as 别名]
def create_simnet_network(input_shape, weights):
    L2_REGULARIZATION = 0.001

    input = Input(shape=input_shape)

    # CNN 1
    vgg16 = create_vgg16_network(input_shape, weights)
    cnn_1 = vgg16(input)

    # CNN 2
    # Downsample by 4:1
    cnn_2 = MaxPooling2D(pool_size=(4, 4))(input)
    cnn_2 = Conv2D(128, (3, 3), padding='same', activation='relu')(cnn_2)
    cnn_2 = Conv2D(128, (3, 3), padding='same', activation='relu')(cnn_2)
    cnn_2 = Conv2D(256, (3, 3), padding='same', activation='relu')(cnn_2)
    cnn_2 = Dropout(0.5)(cnn_2)
    cnn_2 = Flatten()(cnn_2)
    cnn_2 = Dense(1024, activation='relu')(cnn_2)

    # CNN 3
    # Downsample by 8:1
    cnn_3 = MaxPooling2D(pool_size=(8, 8))(input)
    cnn_3 = Conv2D(128, (3, 3), padding='same', activation='relu')(cnn_3)
    cnn_3 = Conv2D(128, (3, 3), padding='same', activation='relu')(cnn_3)
    cnn_3 = Dropout(0.5)(cnn_3)
    cnn_3 = Flatten()(cnn_3)
    cnn_3 = Dense(512, activation='relu')(cnn_3)

    concat_2_3 = concatenate([cnn_2, cnn_3])
    concat_2_3 = Dense(1024, activation='relu')(concat_2_3)
    l2_reg = ActivityRegularization(l2=L2_REGULARIZATION)(concat_2_3)

    concat_1_l2 = concatenate([cnn_1, l2_reg])
    output = Dense(4096, activation='relu')(concat_1_l2)

    return Model(input, output) 
开发者ID:marco-c,项目名称:autowebcompat,代码行数:38,代码来源:network.py

示例3: create_simnetlike_network

# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import ActivityRegularization [as 别名]
def create_simnetlike_network(input_shape, weights):
    L2_REGULARIZATION = 0.005

    input = Input(shape=input_shape)

    # CNN 1
    vgg16 = create_vgglike_network(input_shape, weights)
    cnn_1 = vgg16(input)

    # CNN 2
    # Downsample by 4:1
    cnn_2 = MaxPooling2D(pool_size=(4, 4))(input)
    cnn_2 = Conv2D(32, (3, 3), padding='same', activation='relu')(cnn_2)
    cnn_2 = Conv2D(32, (3, 3), padding='same', activation='relu')(cnn_2)
    cnn_2 = Conv2D(64, (3, 3), padding='same', activation='relu')(cnn_2)
    cnn_2 = Dropout(0.5)(cnn_2)
    cnn_2 = Flatten()(cnn_2)
    cnn_2 = Dense(64, activation='relu')(cnn_2)

    # CNN 3
    # Downsample by 8:1
    cnn_3 = MaxPooling2D(pool_size=(8, 8))(input)
    cnn_3 = Conv2D(16, (3, 3), padding='same', activation='relu')(cnn_3)
    cnn_3 = Conv2D(16, (3, 3), padding='same', activation='relu')(cnn_3)
    cnn_3 = Dropout(0.5)(cnn_3)
    cnn_3 = Flatten()(cnn_3)
    cnn_3 = Dense(32, activation='relu')(cnn_3)

    concat_2_3 = concatenate([cnn_2, cnn_3])
    concat_2_3 = Dense(128, activation='relu')(concat_2_3)
    l2_reg = ActivityRegularization(l2=L2_REGULARIZATION)(concat_2_3)

    concat_1_l2 = concatenate([cnn_1, l2_reg])
    output = Dense(256, activation='relu')(concat_1_l2)

    return Model(input, output) 
开发者ID:marco-c,项目名称:autowebcompat,代码行数:38,代码来源:network.py

示例4: regularization

# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import ActivityRegularization [as 别名]
def regularization(layer, layer_in, layerId, tensor=True):
    l1 = layer['params']['l1']
    l2 = layer['params']['l2']
    out = {layerId: ActivityRegularization(l1=l1, l2=l2)}
    if tensor:
        out[layerId] = out[layerId](*layer_in)
    return out 
开发者ID:Cloud-CV,项目名称:Fabrik,代码行数:9,代码来源:layers_export.py

示例5: test_keras_import

# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import ActivityRegularization [as 别名]
def test_keras_import(self):
        model = Sequential()
        model.add(ActivityRegularization(l1=2, input_shape=(10,)))
        model.build()
        self.keras_type_test(model, 0, 'Regularization') 
开发者ID:Cloud-CV,项目名称:Fabrik,代码行数:7,代码来源:test_views.py

示例6: test_keras_export

# 需要导入模块: from keras import layers [as 别名]
# 或者: from keras.layers import ActivityRegularization [as 别名]
def test_keras_export(self):
        tests = open(os.path.join(settings.BASE_DIR, 'tests', 'unit', 'keras_app',
                                  'keras_export_test.json'), 'r')
        response = json.load(tests)
        tests.close()
        net = yaml.safe_load(json.dumps(response['net']))
        net = {'l0': net['Input3'], 'l1': net['Regularization']}
        net['l0']['connection']['output'].append('l1')
        inp = data(net['l0'], '', 'l0')['l0']
        net = regularization(net['l1'], [inp], 'l1')
        model = Model(inp, net['l1'])
        self.assertEqual(model.layers[1].__class__.__name__, 'ActivityRegularization') 
开发者ID:Cloud-CV,项目名称:Fabrik,代码行数:14,代码来源:test_views.py


注:本文中的keras.layers.ActivityRegularization方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。