当前位置: 首页>>代码示例>>Python>>正文


Python keras.initializers方法代码示例

本文整理汇总了Python中keras.initializers方法的典型用法代码示例。如果您正苦于以下问题:Python keras.initializers方法的具体用法?Python keras.initializers怎么用?Python keras.initializers使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在keras的用法示例。


在下文中一共展示了keras.initializers方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: highway_keras

# 需要导入模块: import keras [as 别名]
# 或者: from keras import initializers [as 别名]
def highway_keras(x):
    # writter by my own
    # paper; Highway Network(http://arxiv.org/abs/1505.00387).
    # 公式
    # 1. s = sigmoid(Wx + b)
    # 2. z = s * relu(Wx + b) + (1 - s) * x
    # x shape : [N * time_depth, sum(filters)]

    # Table 1. CIFAR-10 test set accuracy of convolutional highway networks with
    # rectified linear activation and sigmoid gates.
    # For comparison, results reported by Romero et al. (2014)
    # using maxout networks are also shown.
    # Fitnets were trained using a two step training procedure using soft targets from the trained Teacher network,
    # which was trained using backpropagation. We trained all highway networks directly using backpropagation.
    # * indicates networks which were trained only on a set of 40K out of 50K examples in the training set.



    # Figure 2. Visualization of certain internals of the blocks in the best 50 hidden layer highway networks trained on MNIST
    # (top row) and CIFAR-100 (bottom row). The first hidden layer is a plain layer which changes the dimensionality of the representation to 50. Each of
    # the 49 highway layers (y-axis) consists of 50 blocks (x-axis).
    # The first column shows the transform gate biases, which were initialized to -2 and -4 respectively.
    # In the second column the mean output of the transform gate over 10,000 training examples is depicted.
    # The third and forth columns show the output of the transform gates and
    # the block outputs for a single random training sample.

    gate_transform = Dense(units=K.int_shape(x)[1],
                           activation='sigmoid',
                           use_bias=True,
                           kernel_initializer='glorot_uniform',
                           bias_initializer=keras.initializers.Constant(value=-2))(x)
    gate_cross = 1 - gate_transform
    block_state = Dense(units=K.int_shape(x)[1],
                        activation='relu',
                        use_bias=True,
                        kernel_initializer='glorot_uniform',
                        bias_initializer='zero')(x)
    high_way = gate_transform * block_state + gate_cross * x

    return high_way 
开发者ID:yongzhuo,项目名称:Keras-TextClassification,代码行数:42,代码来源:graph_yoon_kim.py

示例2: get_deep_convnet

# 需要导入模块: import keras [as 别名]
# 或者: from keras import initializers [as 别名]
def get_deep_convnet(window_size=4096, channels=2, output_size=84):
    inputs = Input(shape=(window_size, channels))
    outs = inputs

    outs = (ComplexConv1D(
        16, 6, strides=2, padding='same',
        activation='linear',
        kernel_initializer='complex_independent'))(outs)
    outs = (ComplexBN(axis=-1))(outs)
    outs = (keras.layers.Activation('relu'))(outs)
    outs = (keras.layers.AveragePooling1D(pool_size=2, strides=2))(outs)

    outs = (ComplexConv1D(
        32, 3, strides=2, padding='same',
        activation='linear',
        kernel_initializer='complex_independent'))(outs)
    outs = (ComplexBN(axis=-1))(outs)
    outs = (keras.layers.Activation('relu'))(outs)
    outs = (keras.layers.AveragePooling1D(pool_size=2, strides=2))(outs)
    
    outs = (ComplexConv1D(
        64, 3, strides=1, padding='same',
        activation='linear',
        kernel_initializer='complex_independent'))(outs)
    outs = (ComplexBN(axis=-1))(outs)
    outs = (keras.layers.Activation('relu'))(outs)
    outs = (keras.layers.AveragePooling1D(pool_size=2, strides=2))(outs)

    outs = (ComplexConv1D(
        64, 3, strides=1, padding='same',
        activation='linear',
        kernel_initializer='complex_independent'))(outs)
    outs = (ComplexBN(axis=-1))(outs)
    outs = (keras.layers.Activation('relu'))(outs)
    outs = (keras.layers.AveragePooling1D(pool_size=2, strides=2))(outs)

    outs = (ComplexConv1D(
        128, 3, strides=1, padding='same',
        activation='relu',
        kernel_initializer='complex_independent'))(outs)
    outs = (ComplexConv1D(
        128, 3, strides=1, padding='same',
        activation='linear',
        kernel_initializer='complex_independent'))(outs)
    outs = (ComplexBN(axis=-1))(outs)
    outs = (keras.layers.Activation('relu'))(outs)
    outs = (keras.layers.AveragePooling1D(pool_size=2, strides=2))(outs)

    #outs = (keras.layers.MaxPooling1D(pool_size=2))
    #outs = (Permute([2, 1]))
    outs = (keras.layers.Flatten())(outs)
    outs = (keras.layers.Dense(2048, activation='relu',
                           kernel_initializer='glorot_normal'))(outs)
    predictions = (keras.layers.Dense(output_size, activation='sigmoid',
                                 bias_initializer=keras.initializers.Constant(value=-5)))(outs)

    model = Model(inputs=inputs, outputs=predictions)
    model.compile(optimizer=keras.optimizers.Adam(lr=1e-4),
                  loss='binary_crossentropy',
                  metrics=['accuracy'])
    return model 
开发者ID:ChihebTrabelsi,项目名称:deep_complex_networks,代码行数:63,代码来源:__init__.py


注:本文中的keras.initializers方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。