本文整理汇总了Python中keras.initializers.get方法的典型用法代码示例。如果您正苦于以下问题:Python initializers.get方法的具体用法?Python initializers.get怎么用?Python initializers.get使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类keras.initializers
的用法示例。
在下文中一共展示了initializers.get方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: __init__
# 需要导入模块: from keras import initializers [as 别名]
# 或者: from keras.initializers import get [as 别名]
def __init__(self,
filters,
pooling='sum',
kernel_initializer='glorot_uniform',
kernel_regularizer=None,
bias_initializer='zeros',
activation=None,
**kwargs):
self.activation = activations.get(activation)
self.kernel_initializer = initializers.get(kernel_initializer)
self.bias_initializer = initializers.get(bias_initializer)
self.kernel_regularizer = regularizers.get(kernel_regularizer)
self.filters = filters
self.pooling = pooling
super(GraphConvS, self).__init__(**kwargs)
示例2: __init__
# 需要导入模块: from keras import initializers [as 别名]
# 或者: from keras.initializers import get [as 别名]
def __init__(self,
W_regularizer=None, u_regularizer=None, b_regularizer=None,
W_constraint=None, u_constraint=None, b_constraint=None,
bias=True, **kwargs):
self.init = initializers.get('glorot_uniform')
self.W_regularizer = regularizers.get(W_regularizer)
self.u_regularizer = regularizers.get(u_regularizer)
self.b_regularizer = regularizers.get(b_regularizer)
self.W_constraint = constraints.get(W_constraint)
self.u_constraint = constraints.get(u_constraint)
self.b_constraint = constraints.get(b_constraint)
self.bias = bias
super(AttentionWithContext, self).__init__(**kwargs)
示例3: __init__
# 需要导入模块: from keras import initializers [as 别名]
# 或者: from keras.initializers import get [as 别名]
def __init__(self,
W_regularizer=None, u_regularizer=None, b_regularizer=None,
W_constraint=None, u_constraint=None, b_constraint=None,
bias=True, **kwargs):
self.supports_masking = True
self.init = initializers.get('glorot_uniform')
self.W_regularizer = regularizers.get(W_regularizer)
self.u_regularizer = regularizers.get(u_regularizer)
self.b_regularizer = regularizers.get(b_regularizer)
self.W_constraint = constraints.get(W_constraint)
self.u_constraint = constraints.get(u_constraint)
self.b_constraint = constraints.get(b_constraint)
self.bias = bias
super(AttentionWithContext, self).__init__(**kwargs)
示例4: __init__
# 需要导入模块: from keras import initializers [as 别名]
# 或者: from keras.initializers import get [as 别名]
def __init__(self, init='glorot_uniform',
U_regularizer=None,
b_start_regularizer=None,
b_end_regularizer=None,
U_constraint=None,
b_start_constraint=None,
b_end_constraint=None,
weights=None,
**kwargs):
super(ChainCRF, self).__init__(**kwargs)
self.init = initializers.get(init)
self.U_regularizer = regularizers.get(U_regularizer)
self.b_start_regularizer = regularizers.get(b_start_regularizer)
self.b_end_regularizer = regularizers.get(b_end_regularizer)
self.U_constraint = constraints.get(U_constraint)
self.b_start_constraint = constraints.get(b_start_constraint)
self.b_end_constraint = constraints.get(b_end_constraint)
self.initial_weights = weights
self.supports_masking = True
self.uses_learning_phase = True
self.input_spec = [InputSpec(ndim=3)]
示例5: __init__
# 需要导入模块: from keras import initializers [as 别名]
# 或者: from keras.initializers import get [as 别名]
def __init__(self,
epsilon=1e-4,
axis=-1,
beta_init='zeros',
gamma_init='ones',
gamma_regularizer=None,
beta_regularizer=None,
**kwargs):
self.supports_masking = True
self.beta_init = initializers.get(beta_init)
self.gamma_init = initializers.get(gamma_init)
self.epsilon = epsilon
self.axis = axis
self.gamma_regularizer = regularizers.get(gamma_regularizer)
self.beta_regularizer = regularizers.get(beta_regularizer)
super(LayerNormalization, self).__init__(**kwargs)
示例6: __init__
# 需要导入模块: from keras import initializers [as 别名]
# 或者: from keras.initializers import get [as 别名]
def __init__(self,
axis=None,
epsilon=1e-3,
center=True,
scale=True,
beta_initializer='zeros',
gamma_initializer='ones',
beta_regularizer=None,
gamma_regularizer=None,
beta_constraint=None,
gamma_constraint=None,
**kwargs):
super(InstanceNormalization, self).__init__(**kwargs)
self.supports_masking = True
self.axis = axis
self.epsilon = epsilon
self.center = center
self.scale = scale
self.beta_initializer = initializers.get(beta_initializer)
self.gamma_initializer = initializers.get(gamma_initializer)
self.beta_regularizer = regularizers.get(beta_regularizer)
self.gamma_regularizer = regularizers.get(gamma_regularizer)
self.beta_constraint = constraints.get(beta_constraint)
self.gamma_constraint = constraints.get(gamma_constraint)
示例7: __init__
# 需要导入模块: from keras import initializers [as 别名]
# 或者: from keras.initializers import get [as 别名]
def __init__(self,
W_regularizer=None, b_regularizer=None,
W_constraint=None, b_constraint=None,
bias=True,
return_attention=False,
**kwargs):
self.supports_masking = True
self.return_attention = return_attention
self.init = initializers.get('glorot_uniform')
self.W_regularizer = regularizers.get(W_regularizer)
self.b_regularizer = regularizers.get(b_regularizer)
self.W_constraint = constraints.get(W_constraint)
self.b_constraint = constraints.get(b_constraint)
self.bias = bias
super(Attention, self).__init__(**kwargs)
示例8: __init__
# 需要导入模块: from keras import initializers [as 别名]
# 或者: from keras.initializers import get [as 别名]
def __init__(self,
W_regularizer=None, u_regularizer=None, b_regularizer=None,
W_constraint=None, u_constraint=None, b_constraint=None,
bias=True,
return_attention=False, **kwargs):
self.supports_masking = True
self.return_attention = return_attention
self.init = initializers.get('glorot_uniform')
self.W_regularizer = regularizers.get(W_regularizer)
self.u_regularizer = regularizers.get(u_regularizer)
self.b_regularizer = regularizers.get(b_regularizer)
self.W_constraint = constraints.get(W_constraint)
self.u_constraint = constraints.get(u_constraint)
self.b_constraint = constraints.get(b_constraint)
self.bias = bias
super(AttentionWithContext, self).__init__(**kwargs)
示例9: on_epoch_end
# 需要导入模块: from keras import initializers [as 别名]
# 或者: from keras.initializers import get [as 别名]
def on_epoch_end(self, epoch, logs=None):
logs = logs or {}
self.epochs_since_last_save += 1
if self.epochs_since_last_save >= self.period:
self.epochs_since_last_save = 0
#filepath = self.filepath.format(epoch=epoch + 1, **logs)
current = logs.get(self.monitor)
if current is None:
warnings.warn('Can pick best model only with %s available, '
'skipping.' % (self.monitor), RuntimeWarning)
else:
if self.monitor_op(current, self.best):
if self.verbose > 0:
print('\nEpoch %05d: %s improved from %0.5f to %0.5f,'
' storing weights.'
% (epoch + 1, self.monitor, self.best,
current))
self.best = current
self.best_epochs = epoch + 1
self.best_weights = self.model.get_weights()
else:
if self.verbose > 0:
print('\nEpoch %05d: %s did not improve' %
(epoch + 1, self.monitor))
示例10: __init__
# 需要导入模块: from keras import initializers [as 别名]
# 或者: from keras.initializers import get [as 别名]
def __init__(
self,
heads,
head_size,
key_size=None,
use_bias=True,
attention_scale=True,
kernel_initializer='glorot_uniform',
**kwargs
):
super(MultiHeadAttention, self).__init__(**kwargs)
self.heads = heads
self.head_size = head_size
self.out_dim = heads * head_size
self.key_size = key_size or head_size
self.use_bias = use_bias
self.attention_scale = attention_scale
self.kernel_initializer = initializers.get(kernel_initializer)
示例11: evaluate
# 需要导入模块: from keras import initializers [as 别名]
# 或者: from keras.initializers import get [as 别名]
def evaluate(self, inputs, fn_inverse=None, fn_plot=None):
try:
X, y = inputs
inputs = X
except:
X, conditions, y = inputs
inputs = [X, conditions]
y_hat = self.predict(inputs)
if fn_inverse is not None:
y_hat = fn_inverse(y_hat)
y = fn_inverse(y)
if fn_plot is not None:
fn_plot([y, y_hat])
results = []
for m in self.model.metrics:
if isinstance(m, str):
results.append(K.eval(K.mean(get(m)(y, y_hat))))
else:
results.append(K.eval(K.mean(m(y, y_hat))))
return results
示例12: emit_Affine
# 需要导入模块: from keras import initializers [as 别名]
# 或者: from keras.initializers import get [as 别名]
def emit_Affine(self, IR_node, in_scope=False):
if in_scope:
raise NotImplementedError
else:
self.used_layers.add('Affine')
if IR_node.layer.attr.get('beta', None) is None:
bias = None
else:
bias = IR_node.layer.attr['beta'].f
code = "{:<15} = Affine(name='{}', scale={}, bias={})({})".format(
IR_node.variable_name,
IR_node.name,
IR_node.layer.attr['gamma'].f,
bias,
self.parent_variable_name(IR_node))
return code
示例13: _emit_h_zero
# 需要导入模块: from keras import initializers [as 别名]
# 或者: from keras.initializers import get [as 别名]
def _emit_h_zero(self, IR_node):
if not self.layers_codes.get(IR_node.pattern, None):
class_code = '''
class my_h_zero(keras.layers.Layer):
def __init__(self, **kwargs):
super(my_h_zero, self).__init__(**kwargs)
def call(self, dummy):
{:<15} = K.constant(np.full((1, {}), {}))
return {}
'''.format(IR_node.variable_name,
IR_node.get_attr('fill_size'),
IR_node.get_attr('fill_value'),
IR_node.variable_name)
self.layers_codes[IR_node.pattern] = class_code
code = "{:<15} = my_h_zero()({})".format(IR_node.variable_name, self.parent_variable_name(IR_node))
return code
示例14: __init__
# 需要导入模块: from keras import initializers [as 别名]
# 或者: from keras.initializers import get [as 别名]
def __init__(self, filters,
kernel_size,
strides=(1, 1),
padding='valid',
data_format=None,
depth_multiplier=1,
activation=None,
use_bias=True,
depthwise_initializer='glorot_uniform',
bias_initializer='zeros',
depthwise_regularizer=None,
bias_regularizer=None,
activity_regularizer=None,
depthwise_constraint=None,
bias_constraint=None,
**kwargs):
super(DepthwiseConv2D, self).__init__(
filters=filters,
kernel_size=kernel_size,
strides=strides,
padding=padding,
data_format=data_format,
activation=activation,
use_bias=use_bias,
bias_regularizer=bias_regularizer,
activity_regularizer=activity_regularizer,
bias_constraint=bias_constraint,
**kwargs)
self.depth_multiplier = depth_multiplier
self.depthwise_initializer = initializers.get(depthwise_initializer)
self.depthwise_regularizer = regularizers.get(depthwise_regularizer)
self.depthwise_constraint = constraints.get(depthwise_constraint)
示例15: __init__
# 需要导入模块: from keras import initializers [as 别名]
# 或者: from keras.initializers import get [as 别名]
def __init__(self, return_attention=False, **kwargs):
self.init = initializers.get('uniform')
self.supports_masking = True
self.return_attention = return_attention
super(AttentionWeightedAverage, self).__init__(**kwargs)