当前位置: 首页>>代码示例>>Python>>正文


Python initializers.constant方法代码示例

本文整理汇总了Python中keras.initializers.constant方法的典型用法代码示例。如果您正苦于以下问题:Python initializers.constant方法的具体用法?Python initializers.constant怎么用?Python initializers.constant使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在keras.initializers的用法示例。


在下文中一共展示了initializers.constant方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: nn_model

# 需要导入模块: from keras import initializers [as 别名]
# 或者: from keras.initializers import constant [as 别名]
def nn_model():
    (x_train, y_train), _ = mnist.load_data()
    # 归一化
    x_train = x_train.reshape(x_train.shape[0], -1) / 255.
    # one-hot
    y_train = np_utils.to_categorical(y=y_train, num_classes=10)
    # constant(value=1.)自定义常数,constant(value=1.)===one()
    # 创建模型:输入784个神经元,输出10个神经元
    model = Sequential([
        Dense(units=200, input_dim=784, bias_initializer=constant(value=1.), activation=tanh),
        Dense(units=100, bias_initializer=one(), activation=tanh),
        Dense(units=10, bias_initializer=one(), activation=softmax),
    ])

    opt = SGD(lr=0.2, clipnorm=1.)  # 优化器
    model.compile(optimizer=opt, loss=categorical_crossentropy, metrics=['acc', 'mae'])  # 编译
    model.fit(x_train, y_train, batch_size=64, epochs=20, callbacks=[RemoteMonitor()])
    model_save(model, './model.h5') 
开发者ID:jtyoui,项目名称:Jtyoui,代码行数:20,代码来源:HandWritingRecognition.py

示例2: build

# 需要导入模块: from keras import initializers [as 别名]
# 或者: from keras.initializers import constant [as 别名]
def build(self, input_shape):
        assert len(input_shape) == 5, "The input Tensor should have shape=[None, input_height, input_width," \
                                      " input_num_capsule, input_num_atoms]"
        self.input_height = input_shape[1]
        self.input_width = input_shape[2]
        self.input_num_capsule = input_shape[3]
        self.input_num_atoms = input_shape[4]

        # Transform matrix
        self.W = self.add_weight(shape=[self.input_num_atoms, self.kernel_size, self.kernel_size, 1, self.num_capsule * self.num_atoms],
                                 initializer=self.kernel_initializer,
                                 name='W')

        self.b = self.add_weight(shape=[self.num_capsule, self.num_atoms, 1, 1],
                                 initializer=initializers.constant(0.1),
                                 name='b')

        self.built = True 
开发者ID:brjathu,项目名称:deepcaps,代码行数:20,代码来源:capslayers.py

示例3: build

# 需要导入模块: from keras import initializers [as 别名]
# 或者: from keras.initializers import constant [as 别名]
def build(self, input_shape):
        assert len(input_shape) == 5, "The input Tensor should have shape=[None, input_height, input_width," \
                                      " input_num_capsule, input_num_atoms]"
        self.input_height = input_shape[1]
        self.input_width = input_shape[2]
        self.input_num_capsule = input_shape[3]
        self.input_num_atoms = input_shape[4]

        # Transform matrix
        self.W = self.add_weight(shape=[self.kernel_size, self.kernel_size,
                                 self.input_num_atoms, self.num_capsule * self.num_atoms],
                                 initializer=self.kernel_initializer,
                                 name='W')

        self.b = self.add_weight(shape=[1, 1, self.num_capsule, self.num_atoms],
                                 initializer=initializers.constant(0.1),
                                 name='b')

        self.built = True 
开发者ID:lalonderodney,项目名称:SegCaps,代码行数:21,代码来源:capsule_layers.py

示例4: build

# 需要导入模块: from keras import initializers [as 别名]
# 或者: from keras.initializers import constant [as 别名]
def build(self, input_shape: list):
        """
        Build the layer.

        :param input_shape: the shapes of the input tensors,
            for MatchingTensorLayer we need two input tensors.
        """
        # Used purely for shape validation.
        if not isinstance(input_shape, list) or len(input_shape) != 2:
            raise ValueError('A `MatchingTensorLayer` layer should be called '
                             'on a list of 2 inputs.')
        self._shape1 = input_shape[0]
        self._shape2 = input_shape[1]
        for idx in (0, 2):
            if self._shape1[idx] != self._shape2[idx]:
                raise ValueError(
                    'Incompatible dimensions: '
                    f'{self._shape1[idx]} != {self._shape2[idx]}.'
                    f'Layer shapes: {self._shape1}, {self._shape2}.'
                )

        if self._init_diag:
            interaction_matrix = np.float32(
                np.random.uniform(
                    -0.05, 0.05,
                    [self._channels, self._shape1[2], self._shape2[2]]
                )
            )
            for channel_index in range(self._channels):
                np.fill_diagonal(interaction_matrix[channel_index], 0.1)
            self.interaction_matrix = self.add_weight(
                name='interaction_matrix',
                shape=(self._channels, self._shape1[2], self._shape2[2]),
                initializer=constant(interaction_matrix),
                trainable=True
            )
        else:
            self.interaction_matrix = self.add_weight(
                name='interaction_matrix',
                shape=(self._channels, self._shape1[2], self._shape2[2]),
                initializer='uniform',
                trainable=True
            )
        super(MatchingTensorLayer, self).build(input_shape) 
开发者ID:NTMC-Community,项目名称:MatchZoo,代码行数:46,代码来源:matching_tensor_layer.py

示例5: update_routing

# 需要导入模块: from keras import initializers [as 别名]
# 或者: from keras.initializers import constant [as 别名]
def update_routing(votes, biases, logit_shape, num_dims, input_dim, output_dim,
                   num_routing):
    if num_dims == 6:
        votes_t_shape = [3, 0, 1, 2, 4, 5]
        r_t_shape = [1, 2, 3, 0, 4, 5]
    elif num_dims == 4:
        votes_t_shape = [3, 0, 1, 2]
        r_t_shape = [1, 2, 3, 0]
    else:
        raise NotImplementedError('Not implemented')

    votes_trans = tf.transpose(votes, votes_t_shape)
    _, _, _, height, width, caps = votes_trans.get_shape()

    def _body(i, logits, activations):
        """Routing while loop."""
        # route: [batch, input_dim, output_dim, ...]
        a,b,c,d,e = logits.get_shape()
        a = logit_shape[0]
        b = logit_shape[1]
        c = logit_shape[2]
        d = logit_shape[3]
        e = logit_shape[4]
        print(logit_shape)
        logit_temp = tf.reshape(logits, [a,b,-1])
        route_temp = tf.nn.softmax(logit_temp, dim=-1)
        route = tf.reshape(route_temp, [a, b, c, d, e])
        preactivate_unrolled = route * votes_trans
        preact_trans = tf.transpose(preactivate_unrolled, r_t_shape)
        preactivate = tf.reduce_sum(preact_trans, axis=1) + biases
        # activation = _squash(preactivate)
        activation = squash(preactivate, axis=[-1, -2, -3])
        activations = activations.write(i, activation)

        act_3d = K.expand_dims(activation, 1)
        tile_shape = np.ones(num_dims, dtype=np.int32).tolist()
        tile_shape[1] = input_dim
        act_replicated = tf.tile(act_3d, tile_shape)
        distances = tf.reduce_sum(votes * act_replicated, axis=3)
        logits += distances
        return (i + 1, logits, activations)

    activations = tf.TensorArray(
        dtype=tf.float32, size=num_routing, clear_after_read=False)
    logits = tf.fill(logit_shape, 0.0)

    i = tf.constant(0, dtype=tf.int32)
    _, logits, activations = tf.while_loop(
        lambda i, logits, activations: i < num_routing,
        _body,
        loop_vars=[i, logits, activations],
        swap_memory=True)
    a = K.cast(activations.read(num_routing - 1), dtype='float32')
    return K.cast(activations.read(num_routing - 1), dtype='float32') 
开发者ID:brjathu,项目名称:deepcaps,代码行数:56,代码来源:capslayers.py

示例6: update_routing

# 需要导入模块: from keras import initializers [as 别名]
# 或者: from keras.initializers import constant [as 别名]
def update_routing(votes, biases, logit_shape, num_dims, input_dim, output_dim,
                    num_routing):
    if num_dims == 6:
        votes_t_shape = [5, 0, 1, 2, 3, 4]
        r_t_shape = [1, 2, 3, 4, 5, 0]
    elif num_dims == 4:
        votes_t_shape = [3, 0, 1, 2]
        r_t_shape = [1, 2, 3, 0]
    else:
        raise NotImplementedError('Not implemented')

    votes_trans = tf.transpose(votes, votes_t_shape)
    _, _, _, height, width, caps = votes_trans.get_shape()

    def _body(i, logits, activations):
        """Routing while loop."""
        # route: [batch, input_dim, output_dim, ...]
        route = tf.nn.softmax(logits, dim=-1)
        preactivate_unrolled = route * votes_trans
        preact_trans = tf.transpose(preactivate_unrolled, r_t_shape)
        preactivate = tf.reduce_sum(preact_trans, axis=1) + biases
        activation = _squash(preactivate)
        activations = activations.write(i, activation)
        act_3d = K.expand_dims(activation, 1)
        tile_shape = np.ones(num_dims, dtype=np.int32).tolist()
        tile_shape[1] = input_dim
        act_replicated = tf.tile(act_3d, tile_shape)
        distances = tf.reduce_sum(votes * act_replicated, axis=-1)
        logits += distances
        return (i + 1, logits, activations)

    activations = tf.TensorArray(
      dtype=tf.float32, size=num_routing, clear_after_read=False)
    logits = tf.fill(logit_shape, 0.0)

    i = tf.constant(0, dtype=tf.int32)
    _, logits, activations = tf.while_loop(
      lambda i, logits, activations: i < num_routing,
      _body,
      loop_vars=[i, logits, activations],
      swap_memory=True)

    return K.cast(activations.read(num_routing - 1), dtype='float32') 
开发者ID:lalonderodney,项目名称:SegCaps,代码行数:45,代码来源:capsule_layers.py


注:本文中的keras.initializers.constant方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。