当前位置: 首页>>代码示例>>Python>>正文


Python initializers._compute_fans方法代码示例

本文整理汇总了Python中keras.initializers._compute_fans方法的典型用法代码示例。如果您正苦于以下问题:Python initializers._compute_fans方法的具体用法?Python initializers._compute_fans怎么用?Python initializers._compute_fans使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在keras.initializers的用法示例。


在下文中一共展示了initializers._compute_fans方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: __call__

# 需要导入模块: from keras import initializers [as 别名]
# 或者: from keras.initializers import _compute_fans [as 别名]
def __call__(self, shape, dtype=None):

        if self.nb_filters is not None:
            kernel_shape = tuple(self.kernel_size) + (int(self.input_dim), self.nb_filters)
        else:
            kernel_shape = (int(self.input_dim), self.kernel_size[-1])

        fan_in, fan_out = initializers._compute_fans(
            tuple(self.kernel_size) + (self.input_dim, self.nb_filters)
        )

        if self.criterion == 'glorot':
            s = 1. / (fan_in + fan_out)
        elif self.criterion == 'he':
            s = 1. / fan_in
        else:
            raise ValueError('Invalid criterion: ' + self.criterion)
        rng = RandomState(self.seed)
        modulus = rng.rayleigh(scale=s, size=kernel_shape)
        phase = rng.uniform(low=-np.pi, high=np.pi, size=kernel_shape)
        weight_real = modulus * np.cos(phase)
        weight_imag = modulus * np.sin(phase)
        weight = np.concatenate([weight_real, weight_imag], axis=-1)

        return weight 
开发者ID:ChihebTrabelsi,项目名称:deep_complex_networks,代码行数:27,代码来源:init.py

示例2: test_lecun_uniform

# 需要导入模块: from keras import initializers [as 别名]
# 或者: from keras.initializers import _compute_fans [as 别名]
def test_lecun_uniform(tensor_shape):
    fan_in, _ = initializers._compute_fans(tensor_shape)
    scale = np.sqrt(3. / fan_in)
    _runner(initializers.lecun_uniform(), tensor_shape,
            target_mean=0., target_max=scale, target_min=-scale) 
开发者ID:hello-sea,项目名称:DeepLearning_Wavelet-LSTM,代码行数:7,代码来源:initializers_test.py

示例3: test_glorot_uniform

# 需要导入模块: from keras import initializers [as 别名]
# 或者: from keras.initializers import _compute_fans [as 别名]
def test_glorot_uniform(tensor_shape):
    fan_in, fan_out = initializers._compute_fans(tensor_shape)
    scale = np.sqrt(6. / (fan_in + fan_out))
    _runner(initializers.glorot_uniform(), tensor_shape,
            target_mean=0., target_max=scale, target_min=-scale) 
开发者ID:hello-sea,项目名称:DeepLearning_Wavelet-LSTM,代码行数:7,代码来源:initializers_test.py

示例4: test_he_uniform

# 需要导入模块: from keras import initializers [as 别名]
# 或者: from keras.initializers import _compute_fans [as 别名]
def test_he_uniform(tensor_shape):
    fan_in, _ = initializers._compute_fans(tensor_shape)
    scale = np.sqrt(6. / fan_in)
    _runner(initializers.he_uniform(), tensor_shape,
            target_mean=0., target_max=scale, target_min=-scale) 
开发者ID:hello-sea,项目名称:DeepLearning_Wavelet-LSTM,代码行数:7,代码来源:initializers_test.py

示例5: test_glorot_normal

# 需要导入模块: from keras import initializers [as 别名]
# 或者: from keras.initializers import _compute_fans [as 别名]
def test_glorot_normal(tensor_shape):
    fan_in, fan_out = initializers._compute_fans(tensor_shape)
    scale = np.sqrt(2. / (fan_in + fan_out))
    _runner(initializers.glorot_normal(), tensor_shape,
            target_mean=0., target_std=None, target_max=2 * scale) 
开发者ID:hello-sea,项目名称:DeepLearning_Wavelet-LSTM,代码行数:7,代码来源:initializers_test.py

示例6: test_he_normal

# 需要导入模块: from keras import initializers [as 别名]
# 或者: from keras.initializers import _compute_fans [as 别名]
def test_he_normal(tensor_shape):
    fan_in, _ = initializers._compute_fans(tensor_shape)
    scale = np.sqrt(2. / fan_in)
    _runner(initializers.he_normal(), tensor_shape,
            target_mean=0., target_std=None, target_max=2 * scale) 
开发者ID:hello-sea,项目名称:DeepLearning_Wavelet-LSTM,代码行数:7,代码来源:initializers_test.py


注:本文中的keras.initializers._compute_fans方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。