当前位置: 首页>>代码示例>>Python>>正文


Python initializers.TruncatedNormal方法代码示例

本文整理汇总了Python中keras.initializers.TruncatedNormal方法的典型用法代码示例。如果您正苦于以下问题:Python initializers.TruncatedNormal方法的具体用法?Python initializers.TruncatedNormal怎么用?Python initializers.TruncatedNormal使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在keras.initializers的用法示例。


在下文中一共展示了initializers.TruncatedNormal方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: DC_CNN_Block

# 需要导入模块: from keras import initializers [as 别名]
# 或者: from keras.initializers import TruncatedNormal [as 别名]
def DC_CNN_Block(nb_filter, filter_length, dilation, l2_layer_reg):
    def f(input_):
        
        residual =    input_
        
        layer_out =   Conv1D(filters=nb_filter, kernel_size=filter_length, 
                      dilation_rate=dilation, 
                      activation='linear', padding='causal', use_bias=False,
                      kernel_initializer=TruncatedNormal(mean=0.0, stddev=0.05, 
                      seed=42), kernel_regularizer=l2(l2_layer_reg))(input_)
                    
        layer_out =   Activation('selu')(layer_out)
        
        skip_out =    Conv1D(1,1, activation='linear', use_bias=False, 
                      kernel_initializer=TruncatedNormal(mean=0.0, stddev=0.05, 
                      seed=42), kernel_regularizer=l2(l2_layer_reg))(layer_out)
        
        network_in =  Conv1D(1,1, activation='linear', use_bias=False, 
                      kernel_initializer=TruncatedNormal(mean=0.0, stddev=0.05, 
                      seed=42), kernel_regularizer=l2(l2_layer_reg))(layer_out)
                      
        network_out = Add()([residual, network_in])
        
        return network_out, skip_out
    
    return f 
开发者ID:kristpapadopoulos,项目名称:seriesnet,代码行数:28,代码来源:seriesnet.py

示例2: DC_CNN_Model

# 需要导入模块: from keras import initializers [as 别名]
# 或者: from keras.initializers import TruncatedNormal [as 别名]
def DC_CNN_Model(length):
    
    input = Input(shape=(length,1))
    
    l1a, l1b = DC_CNN_Block(32,2,1,0.001)(input)    
    l2a, l2b = DC_CNN_Block(32,2,2,0.001)(l1a) 
    l3a, l3b = DC_CNN_Block(32,2,4,0.001)(l2a)
    l4a, l4b = DC_CNN_Block(32,2,8,0.001)(l3a)
    l5a, l5b = DC_CNN_Block(32,2,16,0.001)(l4a)
    l6a, l6b = DC_CNN_Block(32,2,32,0.001)(l5a)
    l6b = Dropout(0.8)(l6b) #dropout used to limit influence of earlier data
    l7a, l7b = DC_CNN_Block(32,2,64,0.001)(l6a)
    l7b = Dropout(0.8)(l7b) #dropout used to limit influence of earlier data

    l8 =   Add()([l1b, l2b, l3b, l4b, l5b, l6b, l7b])
    
    l9 =   Activation('relu')(l8)
           
    l21 =  Conv1D(1,1, activation='linear', use_bias=False, 
           kernel_initializer=TruncatedNormal(mean=0.0, stddev=0.05, seed=42),
           kernel_regularizer=l2(0.001))(l9)

    model = Model(input=input, output=l21)
    
    adam = optimizers.Adam(lr=0.00075, beta_1=0.9, beta_2=0.999, epsilon=None, 
                           decay=0.0, amsgrad=False)

    model.compile(loss='mae', optimizer=adam, metrics=['mse'])
    
    return model 
开发者ID:kristpapadopoulos,项目名称:seriesnet,代码行数:32,代码来源:seriesnet.py

示例3: _fire_layer

# 需要导入模块: from keras import initializers [as 别名]
# 或者: from keras.initializers import TruncatedNormal [as 别名]
def _fire_layer(self, name, input, s1x1, e1x1, e3x3, stdd=0.01):
            """
            wrapper for fire layer constructions

            :param name: name for layer
            :param input: previous layer
            :param s1x1: number of filters for squeezing
            :param e1x1: number of filter for expand 1x1
            :param e3x3: number of filter for expand 3x3
            :param stdd: standard deviation used for intialization
            :return: a keras fire layer
            """

            sq1x1 = Conv2D(
                name = name + '/squeeze1x1', filters=s1x1, kernel_size=(1, 1), strides=(1, 1), use_bias=True,
                padding='SAME', kernel_initializer=TruncatedNormal(stddev=stdd), activation="relu",
                kernel_regularizer=l2(self.config.WEIGHT_DECAY))(input)

            ex1x1 = Conv2D(
                name = name + '/expand1x1', filters=e1x1, kernel_size=(1, 1), strides=(1, 1), use_bias=True,
                padding='SAME',  kernel_initializer=TruncatedNormal(stddev=stdd), activation="relu",
                kernel_regularizer=l2(self.config.WEIGHT_DECAY))(sq1x1)

            ex3x3 = Conv2D(
                name = name + '/expand3x3',  filters=e3x3, kernel_size=(3, 3), strides=(1, 1), use_bias=True,
                padding='SAME', kernel_initializer=TruncatedNormal(stddev=stdd), activation="relu",
                kernel_regularizer=l2(self.config.WEIGHT_DECAY))(sq1x1)

            return concatenate([ex1x1, ex3x3], axis=3)

    #wrapper for padding, written in tensorflow. If you want to change to theano you need to rewrite this! 
开发者ID:omni-us,项目名称:squeezedet-keras,代码行数:33,代码来源:squeezeDet.py

示例4: test_truncated_normal

# 需要导入模块: from keras import initializers [as 别名]
# 或者: from keras.initializers import TruncatedNormal [as 别名]
def test_truncated_normal(tensor_shape):
    _runner(initializers.TruncatedNormal(mean=0, stddev=1), tensor_shape,
            target_mean=0., target_std=None, target_max=2) 
开发者ID:hello-sea,项目名称:DeepLearning_Wavelet-LSTM,代码行数:5,代码来源:initializers_test.py


注:本文中的keras.initializers.TruncatedNormal方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。