当前位置: 首页>>代码示例>>Python>>正文


Python initializers.RandomNormal方法代码示例

本文整理汇总了Python中keras.initializers.RandomNormal方法的典型用法代码示例。如果您正苦于以下问题:Python initializers.RandomNormal方法的具体用法?Python initializers.RandomNormal怎么用?Python initializers.RandomNormal使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在keras.initializers的用法示例。


在下文中一共展示了initializers.RandomNormal方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: build

# 需要导入模块: from keras import initializers [as 别名]
# 或者: from keras.initializers import RandomNormal [as 别名]
def build(self, input_shape):
        assert len(input_shape) >= 2
        input_dim = input_shape[-1]
        self.kernel = self.add_weight(shape=(input_dim, self.units),
                                      initializer=self.kernel_initializer,
                                      name='kernel',
                                      regularizer=self.kernel_regularizer,
                                      constraint=self.kernel_constraint)
        if self.use_bias:
            self.bias = self.add_weight(shape=(self.units,),
                                        initializer=self.bias_initializer,
                                        name='bias',
                                        regularizer=self.bias_regularizer,
                                        constraint=self.bias_constraint)
        else:
            self.bias = None
        self.u = self.add_weight(shape=tuple([1, self.kernel.shape.as_list()[-1]]),
                                 initializer=initializers.RandomNormal(0, 1),
                                 name='sn',
                                 trainable=False)
        self.input_spec = InputSpec(min_ndim=2, axes={-1: input_dim})
        self.built = True 
开发者ID:emilwallner,项目名称:Coloring-greyscale-images,代码行数:24,代码来源:sn.py

示例2: atl_img_model

# 需要导入模块: from keras import initializers [as 别名]
# 或者: from keras.initializers import RandomNormal [as 别名]
def atl_img_model(vol_shape, mult=1.0, src=None, atl_layer_name='img_params'):
    """
    atlas model with flow representation
    idea: starting with some (probably rough) atlas (like a ball or average shape),
    the output atlas is this input ball plus a 
    """

    # get a new layer (std)
    if src is None:
        src = Input(shape=[*vol_shape, 1], name='input_atlas')

    # get the velocity field
    v_layer = LocalParamWithInput(shape=[*vol_shape, 1],
                                  mult=mult,
                                  name=atl_layer_name,
                                  my_initializer=RandomNormal(mean=0.0, stddev=1e-7))
    v = v_layer(src)  # this is so memory-wasteful...

    return keras.models.Model(src, v) 
开发者ID:voxelmorph,项目名称:voxelmorph,代码行数:21,代码来源:networks.py

示例3: __conv_init

# 需要导入模块: from keras import initializers [as 别名]
# 或者: from keras.initializers import RandomNormal [as 别名]
def __conv_init(a):
    print("conv_init", a)
    k = RandomNormal(0, 0.02)(a) # for convolution kernel
    k.conv_weight = True    
    return k 
开发者ID:dfaker,项目名称:df,代码行数:7,代码来源:model.py

示例4: upscale_ps

# 需要导入模块: from keras import initializers [as 别名]
# 或者: from keras.initializers import RandomNormal [as 别名]
def upscale_ps(filters, use_norm=True):
    def block(x):
        x = Conv2D(filters*4, kernel_size=3, use_bias=False, kernel_initializer=RandomNormal(0, 0.02), padding='same' )(x)
        x = LeakyReLU(0.1)(x)
        x = PixelShuffler()(x)
        return x
    return block 
开发者ID:dfaker,项目名称:df,代码行数:9,代码来源:model.py

示例5: cvpr2018_net

# 需要导入模块: from keras import initializers [as 别名]
# 或者: from keras.initializers import RandomNormal [as 别名]
def cvpr2018_net(vol_size, enc_nf, dec_nf, full_size=True, indexing='ij'):
    """
    unet architecture for voxelmorph models presented in the CVPR 2018 paper. 
    You may need to modify this code (e.g., number of layers) to suit your project needs.

    :param vol_size: volume size. e.g. (256, 256, 256)
    :param enc_nf: list of encoder filters. right now it needs to be 1x4.
           e.g. [16,32,32,32]
    :param dec_nf: list of decoder filters. right now it must be 1x6 (like voxelmorph-1) or 1x7 (voxelmorph-2)
    :return: the keras model
    """
    ndims = len(vol_size)
    assert ndims in [1, 2, 3], "ndims should be one of 1, 2, or 3. found: %d" % ndims

    # get the core model
    unet_model = unet_core(vol_size, enc_nf, dec_nf, full_size=full_size)
    [src, tgt] = unet_model.inputs
    x = unet_model.output

    # transform the results into a flow field.
    Conv = getattr(KL, 'Conv%dD' % ndims)
    flow = Conv(ndims, kernel_size=3, padding='same', name='flow',
                  kernel_initializer=RandomNormal(mean=0.0, stddev=1e-5))(x)

    # warp the source with the flow
    y = nrn_layers.SpatialTransformer(interp_method='linear', indexing=indexing)([src, flow])
    # prepare model
    model = Model(inputs=[src, tgt], outputs=[y, flow])
    return model 
开发者ID:voxelmorph,项目名称:voxelmorph,代码行数:31,代码来源:networks.py

示例6: __init__

# 需要导入模块: from keras import initializers [as 别名]
# 或者: from keras.initializers import RandomNormal [as 别名]
def __init__(self, shape, my_initializer='RandomNormal', mult=1.0, **kwargs):
        self.shape=shape
        self.initializer = my_initializer
        self.biasmult = mult
        super(LocalParamWithInput, self).__init__(**kwargs) 
开发者ID:voxelmorph,项目名称:voxelmorph,代码行数:7,代码来源:networks.py

示例7: build

# 需要导入模块: from keras import initializers [as 别名]
# 或者: from keras.initializers import RandomNormal [as 别名]
def build(self, input_shape):
        # Create a trainable weight variable for this layer.
        self.i_embedding = self.add_weight(
            shape=(self.input_dim_i, self.rank),
            initializer=RandomNormal(mean=0.0, stddev=1 / np.sqrt(self.rank)),
            name='i_embedding',
            regularizer=self.embeddings_regularizer
        )
        self.j_embedding = self.add_weight(
            shape=(self.input_dim_j, self.rank),
            initializer=RandomNormal(mean=0.0, stddev=1 / np.sqrt(self.rank)),
            name='j_embedding',
            regularizer=self.embeddings_regularizer
        )
        if self.use_bias:
            self.i_bias = self.add_weight(
                shape=(self.input_dim_i, 1),
                initializer='zeros',
                name='i_bias'
            )
            self.j_bias = self.add_weight(
                shape=(self.input_dim_j, 1),
                initializer='zeros',
                name='j_bias'
            )
            self.constant = self.add_weight(
                shape=(1, 1),
                initializer='zeros',
                name='constant',
            )

        self.built = True
        super(KerasMatrixFactorizer, self).build(input_shape) 
开发者ID:YyzHarry,项目名称:ME-Net,代码行数:35,代码来源:keras_models.py

示例8: test_normal

# 需要导入模块: from keras import initializers [as 别名]
# 或者: from keras.initializers import RandomNormal [as 别名]
def test_normal(tensor_shape):
    _runner(initializers.RandomNormal(mean=0, stddev=1), tensor_shape,
            target_mean=0., target_std=1) 
开发者ID:hello-sea,项目名称:DeepLearning_Wavelet-LSTM,代码行数:5,代码来源:initializers_test.py

示例9: __init__

# 需要导入模块: from keras import initializers [as 别名]
# 或者: from keras.initializers import RandomNormal [as 别名]
def __init__(self, filters, init_normal_stddev=0.01, **kwargs):
        """Init"""

        self.filters = filters
        super(ConvOffset2D, self).__init__(
            self.filters * 2, (3, 3), padding='same', use_bias=False,
            # TODO gradients are near zero if init is zeros
            kernel_initializer='zeros',
            # kernel_initializer=RandomNormal(0, init_normal_stddev),
            **kwargs
        ) 
开发者ID:kastnerkyle,项目名称:deform-conv,代码行数:13,代码来源:layers.py

示例10: __init__

# 需要导入模块: from keras import initializers [as 别名]
# 或者: from keras.initializers import RandomNormal [as 别名]
def __init__(self, *args, **kwargs):
        logger.debug("Initializing %s: (args: %s, kwargs: %s",
                     self.__class__.__name__, args, kwargs)

        self.configfile = kwargs.get("configfile", None)
        self.lowmem = self.config.get("lowmem", False)
        kwargs["input_shape"] = (self.config["input_size"], self.config["input_size"], 3)
        kwargs["encoder_dim"] = 512 if self.lowmem else self.config["nodes"]
        self.kernel_initializer = RandomNormal(0, 0.02)

        super().__init__(*args, **kwargs)
        logger.debug("Initialized %s", self.__class__.__name__) 
开发者ID:deepfakes,项目名称:faceswap,代码行数:14,代码来源:unbalanced.py

示例11: __init__

# 需要导入模块: from keras import initializers [as 别名]
# 或者: from keras.initializers import RandomNormal [as 别名]
def __init__(self, *args, **kwargs):
        logger.debug("Initializing %s: (args: %s, kwargs: %s",
                     self.__class__.__name__, args, kwargs)
        kwargs["input_shape"] = (64, 64, 3)
        kwargs["encoder_dim"] = 1024
        self.kernel_initializer = RandomNormal(0, 0.02)
        super().__init__(*args, **kwargs)
        logger.debug("Initialized %s", self.__class__.__name__) 
开发者ID:deepfakes,项目名称:faceswap,代码行数:10,代码来源:dfaker.py

示例12: __init__

# 需要导入模块: from keras import initializers [as 别名]
# 或者: from keras.initializers import RandomNormal [as 别名]
def __init__(self, *args, **kwargs):
        logger.debug("Initializing %s: (args: %s, kwargs: %s",
                     self.__class__.__name__, args, kwargs)

        self.configfile = kwargs.get("configfile", None)
        self.check_input_output()
        self.dense_width, self.upscalers_no = self.get_dense_width_upscalers_numbers()
        kwargs["input_shape"] = (self.config["input_size"], self.config["input_size"], 3)
        self.kernel_initializer = RandomNormal(0, 0.02)

        super().__init__(*args, **kwargs)
        logger.debug("Initialized %s", self.__class__.__name__) 
开发者ID:deepfakes,项目名称:faceswap,代码行数:14,代码来源:realface.py

示例13: __init__

# 需要导入模块: from keras import initializers [as 别名]
# 或者: from keras.initializers import RandomNormal [as 别名]
def __init__(self, *args, **kwargs):
        logger.debug("Initializing %s: (args: %s, kwargs: %s",
                     self.__class__.__name__, args, kwargs)

        self.configfile = kwargs.get("configfile", None)
        kwargs["input_shape"] = (128, 128, 3)
        kwargs["encoder_dim"] = 512 if self.config["lowmem"] else 1024
        self.kernel_initializer = RandomNormal(0, 0.02)

        super().__init__(*args, **kwargs)
        logger.debug("Initialized %s", self.__class__.__name__) 
开发者ID:deepfakes,项目名称:faceswap,代码行数:13,代码来源:villain.py

示例14: wcrn3D

# 需要导入模块: from keras import initializers [as 别名]
# 或者: from keras.initializers import RandomNormal [as 别名]
def wcrn3D(band, ncla1):
    input1 = Input(shape=(5,5,band))

    # define network
    conv0x = Conv2D(64,kernel_size=(1,1,7),padding='valid',
                   kernel_initializer=RandomNormal(mean=0.0, stddev=0.01))
    conv0 = Conv2D(64,kernel_size=(3,3,1),padding='valid',
                   kernel_initializer=RandomNormal(mean=0.0, stddev=0.01))
    bn11 = BatchNormalization(axis=-1,momentum=0.9,epsilon=0.001,center=True,scale=True,
                             beta_initializer='zeros',gamma_initializer='ones',
                             moving_mean_initializer='zeros',
                             moving_variance_initializer='ones')
    conv11 = Conv2D(128,kernel_size=(1,1),padding='same',
                   kernel_initializer=RandomNormal(mean=0.0, stddev=0.01))
    conv12 = Conv2D(128,kernel_size=(1,1),padding='same',
                   kernel_initializer=RandomNormal(mean=0.0, stddev=0.01))
    fc1 = Dense(ncla1,activation='softmax',name='output1',
                kernel_initializer=RandomNormal(mean=0.0, stddev=0.01))

    # x1
    x1 = conv0(input1)
    x1x = conv0x(input1)
    x1 = MaxPooling2D(pool_size=(3,3))(x1)
    x1x = MaxPooling2D(pool_size=(5,5))(x1x)
    x1 = concatenate([x1,x1x],axis=-1)
    x11 = bn11(x1)
    x11 = Activation('relu')(x11)
    x11 = conv11(x11)
    x11 = Activation('relu')(x11)
    x11 = conv12(x11)
    x1 = Add()([x1,x11])
    
    x1 = Flatten()(x1)
    pre1 = fc1(x1)

    model1 = Model(inputs=input1, outputs=pre1)
    return model1 
开发者ID:stop68,项目名称:Remote-Sensing-Image-Classification,代码行数:39,代码来源:networks.py

示例15: wcrn

# 需要导入模块: from keras import initializers [as 别名]
# 或者: from keras.initializers import RandomNormal [as 别名]
def wcrn(band, ncla1):
    input1 = Input(shape=(5,5,band))

    # define network
    conv0x = Conv2D(64,kernel_size=(1,1),padding='valid',
                   kernel_initializer=RandomNormal(mean=0.0, stddev=0.01))
    conv0 = Conv2D(64,kernel_size=(3,3),padding='valid',
                   kernel_initializer=RandomNormal(mean=0.0, stddev=0.01))
    bn11 = BatchNormalization(axis=-1,momentum=0.9,epsilon=0.001,center=True,scale=True,
                             beta_initializer='zeros',gamma_initializer='ones',
                             moving_mean_initializer='zeros',
                             moving_variance_initializer='ones')
    conv11 = Conv2D(128,kernel_size=(1,1),padding='same',
                   kernel_initializer=RandomNormal(mean=0.0, stddev=0.01))
    conv12 = Conv2D(128,kernel_size=(1,1),padding='same',
                   kernel_initializer=RandomNormal(mean=0.0, stddev=0.01))
#    
    fc1 = Dense(ncla1,activation='softmax',name='output1',
                kernel_initializer=RandomNormal(mean=0.0, stddev=0.01))

    # x1
    x1 = conv0(input1)
    x1x = conv0x(input1)
    x1 = MaxPooling2D(pool_size=(3,3))(x1)
    x1x = MaxPooling2D(pool_size=(5,5))(x1x)
    x1 = concatenate([x1,x1x],axis=-1)
    x11 = bn11(x1)
    x11 = Activation('relu')(x11)
    x11 = conv11(x11)
    x11 = Activation('relu')(x11)
    x11 = conv12(x11)
    x1 = Add()([x1,x11])
    
    x1 = Flatten()(x1)
    pre1 = fc1(x1)

    model1 = Model(inputs=input1, outputs=pre1)
    return model1 
开发者ID:stop68,项目名称:Remote-Sensing-Image-Classification,代码行数:40,代码来源:networks.py


注:本文中的keras.initializers.RandomNormal方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。