本文整理汇总了Python中keras.initializations.normal方法的典型用法代码示例。如果您正苦于以下问题:Python initializations.normal方法的具体用法?Python initializations.normal怎么用?Python initializations.normal使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类keras.initializations
的用法示例。
在下文中一共展示了initializations.normal方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: generator
# 需要导入模块: from keras import initializations [as 别名]
# 或者: from keras.initializations import normal [as 别名]
def generator(batch_size, gf_dim, ch, rows, cols):
model = Sequential()
model.add(
Dense(gf_dim * 8 * rows[0] * cols[0], batch_input_shape=(batch_size, z_dim), name="g_h0_lin", init=normal))
model.add(Reshape((rows[0], cols[0], gf_dim * 8)))
model.add(BN(mode=2, axis=3, name="g_bn0", gamma_init=mean_normal, epsilon=1e-5))
model.add(Activation("relu"))
model.add(Deconvolution2D(gf_dim * 4, 5, 5, output_shape=(batch_size, rows[1], cols[1], gf_dim * 4), subsample=(2, 2),
name="g_h1", border_mode="same", init=normal))
model.add(BN(mode=2, axis=3, name="g_bn1", gamma_init=mean_normal, epsilon=1e-5))
model.add(Activation("relu"))
model.add(Deconvolution2D(gf_dim * 2, 5, 5, output_shape=(batch_size, rows[2], cols[2], gf_dim * 2), subsample=(2, 2),
name="g_h2", border_mode="same", init=normal))
model.add(BN(mode=2, axis=3, name="g_bn2", gamma_init=mean_normal, epsilon=1e-5))
model.add(Activation("relu"))
model.add(Deconvolution2D(ch, 5, 5, output_shape=(batch_size, rows[3], cols[3], ch), subsample=(2, 2), name="g_h3",
border_mode="same", init=normal))
model.add(Activation("tanh"))
return model
示例2: encoder
# 需要导入模块: from keras import initializations [as 别名]
# 或者: from keras.initializations import normal [as 别名]
def encoder(batch_size, df_dim, ch, rows, cols):
model = Sequential()
X = Input(batch_shape=(batch_size, rows[-1], cols[-1], ch))
model = Convolution2D(df_dim, 5, 5, subsample=(2, 2), border_mode="same",
name="e_h0_conv", dim_ordering="tf", init=normal)(X)
model = LeakyReLU(.2)(model)
model = Convolution2D(df_dim * 2, 5, 5, subsample=(2, 2), border_mode="same",
name="e_h1_conv", dim_ordering="tf")(model)
model = BN(mode=2, axis=3, name="e_bn1", gamma_init=mean_normal, epsilon=1e-5)(model)
model = LeakyReLU(.2)(model)
model = Convolution2D(df_dim * 4, 5, 5, subsample=(2, 2), name="e_h2_conv", border_mode="same",
dim_ordering="tf", init=normal)(model)
model = BN(mode=2, axis=3, name="e_bn2", gamma_init=mean_normal, epsilon=1e-5)(model)
model = LeakyReLU(.2)(model)
model = Flatten()(model)
mean = Dense(z_dim, name="e_h3_lin", init=normal)(model)
logsigma = Dense(z_dim, name="e_h4_lin", activation="tanh", init=normal)(model)
meansigma = Model([X], [mean, logsigma])
return meansigma
示例3: discriminator
# 需要导入模块: from keras import initializations [as 别名]
# 或者: from keras.initializations import normal [as 别名]
def discriminator(batch_size, df_dim, ch, rows, cols):
X = Input(batch_shape=(batch_size, rows[-1], cols[-1], ch))
model = Convolution2D(df_dim, 5, 5, subsample=(2, 2), border_mode="same",
name="d_h0_conv", dim_ordering="tf", init=normal)(X)
model = LeakyReLU(.2)(model)
model = Convolution2D(df_dim * 2, 5, 5, subsample=(2, 2), border_mode="same",
name="d_h1_conv", dim_ordering="tf", init=normal)(model)
model = BN(mode=2, axis=3, name="d_bn1", gamma_init=mean_normal, epsilon=1e-5)(model)
model = LeakyReLU(.2)(model)
model = Convolution2D(df_dim * 4, 5, 5, subsample=(2, 2), border_mode="same",
name="d_h2_conv", dim_ordering="tf", init=normal)(model)
dec = BN(mode=2, axis=3, name="d_bn3", gamma_init=mean_normal, epsilon=1e-5)(model)
dec = LeakyReLU(.2)(dec)
dec = Flatten()(dec)
dec = Dense(1, name="d_h3_lin", init=normal)(dec)
output = Model([X], [dec, model])
return output
示例4: generator
# 需要导入模块: from keras import initializations [as 别名]
# 或者: from keras.initializations import normal [as 别名]
def generator(batch_size, gf_dim, ch, rows, cols):
model = Sequential()
model.add(Dense(gf_dim*8*rows[0]*cols[0], batch_input_shape=(batch_size, z_dim), name="g_h0_lin", init=normal))
model.add(Reshape((rows[0], cols[0], gf_dim*8)))
model.add(BN(mode=2, axis=3, name="g_bn0", gamma_init=mean_normal, epsilon=1e-5))
model.add(Activation("relu"))
model.add(Deconv2D(gf_dim*4, 5, 5, subsample=(2, 2), name="g_h1", init=normal))
model.add(BN(mode=2, axis=3, name="g_bn1", gamma_init=mean_normal, epsilon=1e-5))
model.add(Activation("relu"))
model.add(Deconv2D(gf_dim*2, 5, 5, subsample=(2, 2), name="g_h2", init=normal))
model.add(BN(mode=2, axis=3, name="g_bn2", gamma_init=mean_normal, epsilon=1e-5))
model.add(Activation("relu"))
model.add(Deconv2D(gf_dim, 5, 5, subsample=(2, 2), name="g_h3", init=normal))
model.add(BN(mode=2, axis=3, name="g_bn3", gamma_init=mean_normal, epsilon=1e-5))
model.add(Activation("relu"))
model.add(Deconv2D(ch, 5, 5, subsample=(2, 2), name="g_h4", init=normal))
model.add(Activation("tanh"))
return model
示例5: mean_normal
# 需要导入模块: from keras import initializations [as 别名]
# 或者: from keras.initializations import normal [as 别名]
def mean_normal(shape, mean=1., scale=0.02, name=None):
return K.variable(np.random.normal(loc=mean, scale=scale, size=shape), name=name)
示例6: fetch_next_batch
# 需要导入模块: from keras import initializations [as 别名]
# 或者: from keras.initializations import normal [as 别名]
def fetch_next_batch(cifar):
z = np.random.normal(0., 1., (batch_size, z_dim)) # normal dist for GAN
x = cifar.train.next_batch(batch_size)
return z, x[0]
示例7: fetch_next_batch
# 需要导入模块: from keras import initializations [as 别名]
# 或者: from keras.initializations import normal [as 别名]
def fetch_next_batch(s):
z = np.random.normal(0., 1., (batch_size, z_dim)) # normal dist for GAN
x = s.train.next_batch(batch_size)
return z, x[0]
示例8: init_normal
# 需要导入模块: from keras import initializations [as 别名]
# 或者: from keras.initializations import normal [as 别名]
def init_normal(shape, name=None):
return initializations.normal(shape, scale=0.01, name=name)
示例9: weights_init
# 需要导入模块: from keras import initializations [as 别名]
# 或者: from keras.initializations import normal [as 别名]
def weights_init(shape, name=None, dim_ordering=None):
return normal(shape, scale=0.01, name=name)
示例10: get_q_network
# 需要导入模块: from keras import initializations [as 别名]
# 或者: from keras.initializations import normal [as 别名]
def get_q_network(weights_path):
model = Sequential()
model.add(Dense(1024, init=lambda shape, name: normal(shape, scale=0.01, name=name), input_shape=(25112,)))
model.add(Activation('relu'))
model.add(Dropout(0.2))
model.add(Dense(1024, init=lambda shape, name: normal(shape, scale=0.01, name=name)))
model.add(Activation('relu'))
model.add(Dropout(0.2))
model.add(Dense(6, init=lambda shape, name: normal(shape, scale=0.01, name=name)))
model.add(Activation('linear'))
adam = Adam(lr=1e-6)
model.compile(loss='mse', optimizer=adam)
if weights_path != "0":
model.load_weights(weights_path)
return model
示例11: cleanup
# 需要导入模块: from keras import initializations [as 别名]
# 或者: from keras.initializations import normal [as 别名]
def cleanup(data):
X = data[0][:64, -1]
X = np.asarray([cv2.resize(x.transpose(1, 2, 0), (160, 80)) for x in X])
X = X/127.5 - 1.
Z = np.random.normal(0, 1, (X.shape[0], z_dim))
return Z, X
示例12: encoder
# 需要导入模块: from keras import initializations [as 别名]
# 或者: from keras.initializations import normal [as 别名]
def encoder(batch_size, df_dim, ch, rows, cols):
model = Sequential()
X = Input(batch_shape=(batch_size, rows[-1], cols[-1], ch))
model = Convolution2D(df_dim, 5, 5, subsample=(2, 2), border_mode="same",
name="e_h0_conv", dim_ordering="tf", init=normal)(X)
model = LeakyReLU(.2)(model)
model = Convolution2D(df_dim*2, 5, 5, subsample=(2, 2), border_mode="same",
name="e_h1_conv", dim_ordering="tf")(model)
model = BN(mode=2, axis=3, name="e_bn1", gamma_init=mean_normal, epsilon=1e-5)(model)
model = LeakyReLU(.2)(model)
model = Convolution2D(df_dim*4, 5, 5, subsample=(2, 2), name="e_h2_conv", border_mode="same",
dim_ordering="tf", init=normal)(model)
model = BN(mode=2, axis=3, name="e_bn2", gamma_init=mean_normal, epsilon=1e-5)(model)
model = LeakyReLU(.2)(model)
model = Convolution2D(df_dim*8, 5, 5, subsample=(2, 2), border_mode="same",
name="e_h3_conv", dim_ordering="tf", init=normal)(model)
model = BN(mode=2, axis=3, name="e_bn3", gamma_init=mean_normal, epsilon=1e-5)(model)
model = LeakyReLU(.2)(model)
model = Flatten()(model)
mean = Dense(z_dim, name="e_h3_lin", init=normal)(model)
logsigma = Dense(z_dim, name="e_h4_lin", activation="tanh", init=normal)(model)
meansigma = Model([X], [mean, logsigma])
return meansigma
示例13: cleanup
# 需要导入模块: from keras import initializations [as 别名]
# 或者: from keras.initializations import normal [as 别名]
def cleanup(data):
X = data[0]
sh = X.shape
X = X.reshape((-1, 3, 160, 320))
X = np.asarray([cv2.resize(x.transpose(1, 2, 0), (160, 80)) for x in X])
X = X/127.5 - 1.
X = X.reshape((sh[0], (time+out_leng)*4, 80, 160, 3))
Z = np.random.normal(0, 1, (X.shape[0], z_dim))
return Z, X[:, ::4]
示例14: gaussian_init
# 需要导入模块: from keras import initializations [as 别名]
# 或者: from keras.initializations import normal [as 别名]
def gaussian_init(shape, name=None, dim_ordering=None):
return initializations.normal(shape, scale=0.001, name=name, dim_ordering=dim_ordering)
示例15: normal_init
# 需要导入模块: from keras import initializations [as 别名]
# 或者: from keras.initializations import normal [as 别名]
def normal_init(shape, dim_ordering='tf', name=None):
return normal(shape, scale=0.0000001, name=name, dim_ordering=dim_ordering)