当前位置: 首页>>代码示例>>Python>>正文


Python imdb.load_data方法代码示例

本文整理汇总了Python中keras.datasets.imdb.load_data方法的典型用法代码示例。如果您正苦于以下问题:Python imdb.load_data方法的具体用法?Python imdb.load_data怎么用?Python imdb.load_data使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在keras.datasets.imdb的用法示例。


在下文中一共展示了imdb.load_data方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_cifar

# 需要导入模块: from keras.datasets import imdb [as 别名]
# 或者: from keras.datasets.imdb import load_data [as 别名]
def test_cifar(self):
        print('cifar10')
        (X_train, y_train), (X_test, y_test) = cifar10.load_data()
        print(X_train.shape)
        print(X_test.shape)
        print(y_train.shape)
        print(y_test.shape)

        print('cifar100 fine')
        (X_train, y_train), (X_test, y_test) = cifar100.load_data('fine')
        print(X_train.shape)
        print(X_test.shape)
        print(y_train.shape)
        print(y_test.shape)

        print('cifar100 coarse')
        (X_train, y_train), (X_test, y_test) = cifar100.load_data('coarse')
        print(X_train.shape)
        print(X_test.shape)
        print(y_train.shape)
        print(y_test.shape) 
开发者ID:lllcho,项目名称:CAPTCHA-breaking,代码行数:23,代码来源:test_datasets.py

示例2: test_imdb

# 需要导入模块: from keras.datasets import imdb [as 别名]
# 或者: from keras.datasets.imdb import load_data [as 别名]
def test_imdb(self):
        print('imdb')
        (X_train, y_train), (X_test, y_test) = imdb.load_data() 
开发者ID:lllcho,项目名称:CAPTCHA-breaking,代码行数:5,代码来源:test_datasets.py

示例3: setup_cifar

# 需要导入模块: from keras.datasets import imdb [as 别名]
# 或者: from keras.datasets.imdb import load_data [as 别名]
def setup_cifar(train, epoch_size):
    # Setup
    if train:
        # Training setup
        from keras.datasets import cifar10
        from keras.utils.np_utils import to_categorical
        click.echo('Loading CIFAR data')
        (x_train, y_train_cats), (_, _) = cifar10.load_data()
        x_train = x_train[:epoch_size]
        y_train_cats = y_train_cats[:epoch_size]
        y_train = to_categorical(y_train_cats, num_classes=1000)
    else:
        # Inference setup
        this_dir = os.path.dirname(os.path.abspath(__file__))
        cifar_path = os.path.join(this_dir, 'cifar16.npy')
        x_train = np.load(cifar_path).repeat(1 + epoch_size // 16, axis=0)[:epoch_size]
        y_train = None
    return x_train, y_train 
开发者ID:plaidml,项目名称:plaidbench,代码行数:20,代码来源:frontend_keras.py

示例4: setup_imdb

# 需要导入模块: from keras.datasets import imdb [as 别名]
# 或者: from keras.datasets.imdb import load_data [as 别名]
def setup_imdb(train, epoch_size):
    # Setup
    if train:
        # Training setup
        from keras.datasets import imdb
        from keras.preprocessing import sequence
        click.echo('Loading IMDB data')
        (x_train, y_train), (_, _) = imdb.load_data(num_words=imdb_max_features)
        x_train = sequence.pad_sequences(x_train, maxlen=imdb_max_length)
        x_train = x_train[:epoch_size]
        y_train = y_train[:epoch_size]
    else:
        # Inference setup
        this_dir = os.path.dirname(os.path.abspath(__file__))
        imdb_path = os.path.join(this_dir, 'imdb16.npy')
        x_train = np.load(imdb_path).repeat(1 + epoch_size // 16, axis=0)[:epoch_size]
        y_train = None
    return x_train, y_train 
开发者ID:plaidml,项目名称:plaidbench,代码行数:20,代码来源:frontend_keras.py

示例5: data

# 需要导入模块: from keras.datasets import imdb [as 别名]
# 或者: from keras.datasets.imdb import load_data [as 别名]
def data():
    maxlen = 100
    max_features = 20000

    print('Loading data...')
    (X_train, y_train), (X_test, y_test) = imdb.load_data(nb_words=max_features)
    print(len(X_train), 'train sequences')
    print(len(X_test), 'test sequences')

    print("Pad sequences (samples x time)")
    X_train = sequence.pad_sequences(X_train, maxlen=maxlen)
    X_test = sequence.pad_sequences(X_test, maxlen=maxlen)
    print('X_train shape:', X_train.shape)
    print('X_test shape:', X_test.shape)

    return X_train, X_test, y_train, y_test, max_features, maxlen 
开发者ID:maxpumperla,项目名称:hyperas,代码行数:18,代码来源:lstm.py

示例6: data

# 需要导入模块: from keras.datasets import imdb [as 别名]
# 或者: from keras.datasets.imdb import load_data [as 别名]
def data(max_features=5000, maxlen=400):
    print('Loading data...')
    (x_train, y_train), (x_test, y_test) = imdb.load_data(num_words=max_features)

    # subset the data
    x_train = x_train[:1000]
    y_train = y_train[:1000]
    x_test = x_test[:100]
    y_test = y_test[:100]

    print(len(x_train), 'train sequences')
    print(len(x_test), 'test sequences')

    print('Pad sequences (samples x time)')
    x_train = sequence.pad_sequences(x_train, maxlen=maxlen)
    x_test = sequence.pad_sequences(x_test, maxlen=maxlen)
    print('x_train shape:', x_train.shape)
    print('x_test shape:', x_test.shape)
    return (x_train, y_train, [1, 2, 3, "dummy_data"]), (x_test, y_test) 
开发者ID:Avsecz,项目名称:kopt,代码行数:21,代码来源:data.py

示例7: load_retures_keras

# 需要导入模块: from keras.datasets import imdb [as 别名]
# 或者: from keras.datasets.imdb import load_data [as 别名]
def load_retures_keras():
    from keras.preprocessing.text import Tokenizer
    from keras.datasets import reuters
    max_words = 1000

    print('Loading data...')
    (x, y), (_, _) = reuters.load_data(num_words=max_words, test_split=0.)
    print(len(x), 'train sequences')

    num_classes = np.max(y) + 1
    print(num_classes, 'classes')

    print('Vectorizing sequence data...')
    tokenizer = Tokenizer(num_words=max_words)
    x = tokenizer.sequences_to_matrix(x, mode='binary')
    print('x_train shape:', x.shape)

    return x.astype(float), y 
开发者ID:XifengGuo,项目名称:DEC-keras,代码行数:20,代码来源:datasets.py

示例8: load_imdb

# 需要导入模块: from keras.datasets import imdb [as 别名]
# 或者: from keras.datasets.imdb import load_data [as 别名]
def load_imdb():
    from keras.preprocessing.text import Tokenizer
    from keras.datasets import imdb
    max_words = 1000

    print('Loading data...')
    (x1, y1), (x2, y2) = imdb.load_data(num_words=max_words)
    x = np.concatenate((x1, x2))
    y = np.concatenate((y1, y2))
    print(len(x), 'train sequences')

    num_classes = np.max(y) + 1
    print(num_classes, 'classes')

    print('Vectorizing sequence data...')
    tokenizer = Tokenizer(num_words=max_words)
    x = tokenizer.sequences_to_matrix(x, mode='binary')
    print('x_train shape:', x.shape)

    return x.astype(float), y 
开发者ID:XifengGuo,项目名称:DEC-keras,代码行数:22,代码来源:datasets.py

示例9: main

# 需要导入模块: from keras.datasets import imdb [as 别名]
# 或者: from keras.datasets.imdb import load_data [as 别名]
def main():

    data = load_data(20000)
    data = pad_sequences(data)
    model = build_network(vocab_size=data["vocab_size"],
                          embedding_dim=100,
                          sequence_length=data["sequence_length"])

    callbacks = create_callbacks("sentiment")

    model.fit(x=data["X_train"], y=data["y_train"],
              batch_size=32,
              epochs=10,
              validation_data=(data["X_test"], data["y_test"]),
              callbacks=callbacks)

    model.save("sentiment.h5")

    score, acc = model.evaluate(data["X_test"], data["y_test"],
                                batch_size=32)
    print('Test loss:', score)
    print('Test accuracy:', acc) 
开发者ID:PacktPublishing,项目名称:Deep-Learning-Quick-Reference,代码行数:24,代码来源:imdb_sentiment.py

示例10: test_reuters

# 需要导入模块: from keras.datasets import imdb [as 别名]
# 或者: from keras.datasets.imdb import load_data [as 别名]
def test_reuters(self):
        print('reuters')
        (X_train, y_train), (X_test, y_test) = reuters.load_data() 
开发者ID:lllcho,项目名称:CAPTCHA-breaking,代码行数:5,代码来源:test_datasets.py

示例11: test_mnist

# 需要导入模块: from keras.datasets import imdb [as 别名]
# 或者: from keras.datasets.imdb import load_data [as 别名]
def test_mnist(self):
        print('mnist')
        (X_train, y_train), (X_test, y_test) = mnist.load_data()
        print(X_train.shape)
        print(X_test.shape)
        print(y_train.shape)
        print(y_test.shape) 
开发者ID:lllcho,项目名称:CAPTCHA-breaking,代码行数:9,代码来源:test_datasets.py

示例12: test_cifar

# 需要导入模块: from keras.datasets import imdb [as 别名]
# 或者: from keras.datasets.imdb import load_data [as 别名]
def test_cifar():
    # only run data download tests 20% of the time
    # to speed up frequent testing
    random.seed(time.time())
    if random.random() > 0.8:
        (x_train, y_train), (x_test, y_test) = cifar10.load_data()
        assert len(x_train) == len(y_train) == 50000
        assert len(x_test) == len(y_test) == 10000
        (x_train, y_train), (x_test, y_test) = cifar100.load_data('fine')
        assert len(x_train) == len(y_train) == 50000
        assert len(x_test) == len(y_test) == 10000
        (x_train, y_train), (x_test, y_test) = cifar100.load_data('coarse')
        assert len(x_train) == len(y_train) == 50000
        assert len(x_test) == len(y_test) == 10000 
开发者ID:hello-sea,项目名称:DeepLearning_Wavelet-LSTM,代码行数:16,代码来源:test_datasets.py

示例13: test_reuters

# 需要导入模块: from keras.datasets import imdb [as 别名]
# 或者: from keras.datasets.imdb import load_data [as 别名]
def test_reuters():
    # only run data download tests 20% of the time
    # to speed up frequent testing
    random.seed(time.time())
    if random.random() > 0.8:
        (x_train, y_train), (x_test, y_test) = reuters.load_data()
        assert len(x_train) == len(y_train)
        assert len(x_test) == len(y_test)
        assert len(x_train) + len(x_test) == 11228
        (x_train, y_train), (x_test, y_test) = reuters.load_data(maxlen=10)
        assert len(x_train) == len(y_train)
        assert len(x_test) == len(y_test)
        word_index = reuters.get_word_index()
        assert isinstance(word_index, dict) 
开发者ID:hello-sea,项目名称:DeepLearning_Wavelet-LSTM,代码行数:16,代码来源:test_datasets.py

示例14: test_mnist

# 需要导入模块: from keras.datasets import imdb [as 别名]
# 或者: from keras.datasets.imdb import load_data [as 别名]
def test_mnist():
    # only run data download tests 20% of the time
    # to speed up frequent testing
    random.seed(time.time())
    if random.random() > 0.8:
        (x_train, y_train), (x_test, y_test) = mnist.load_data()
        assert len(x_train) == len(y_train) == 60000
        assert len(x_test) == len(y_test) == 10000 
开发者ID:hello-sea,项目名称:DeepLearning_Wavelet-LSTM,代码行数:10,代码来源:test_datasets.py

示例15: test_imdb

# 需要导入模块: from keras.datasets import imdb [as 别名]
# 或者: from keras.datasets.imdb import load_data [as 别名]
def test_imdb():
    # only run data download tests 20% of the time
    # to speed up frequent testing
    random.seed(time.time())
    if random.random() > 0.8:
        (x_train, y_train), (x_test, y_test) = imdb.load_data()
        (x_train, y_train), (x_test, y_test) = imdb.load_data(maxlen=40)
        assert len(x_train) == len(y_train)
        assert len(x_test) == len(y_test)
        word_index = imdb.get_word_index()
        assert isinstance(word_index, dict) 
开发者ID:hello-sea,项目名称:DeepLearning_Wavelet-LSTM,代码行数:13,代码来源:test_datasets.py


注:本文中的keras.datasets.imdb.load_data方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。