当前位置: 首页>>代码示例>>Python>>正文


Python callbacks.ProgbarLogger方法代码示例

本文整理汇总了Python中keras.callbacks.ProgbarLogger方法的典型用法代码示例。如果您正苦于以下问题:Python callbacks.ProgbarLogger方法的具体用法?Python callbacks.ProgbarLogger怎么用?Python callbacks.ProgbarLogger使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在keras.callbacks的用法示例。


在下文中一共展示了callbacks.ProgbarLogger方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: __init__

# 需要导入模块: from keras import callbacks [as 别名]
# 或者: from keras.callbacks import ProgbarLogger [as 别名]
def __init__(self, show_metrics=None):
        super(ProgbarLogger, self).__init__()

        self.show_metrics = show_metrics 
开发者ID:igormq,项目名称:asr-study,代码行数:6,代码来源:callbacks.py

示例2: on_train_begin

# 需要导入模块: from keras import callbacks [as 别名]
# 或者: from keras.callbacks import ProgbarLogger [as 别名]
def on_train_begin(self, logs=None):
        super(ProgbarLogger, self).on_train_begin(logs)

        if self.show_metrics:
            self.params['metrics'] = self.show_metrics 
开发者ID:igormq,项目名称:asr-study,代码行数:7,代码来源:callbacks.py

示例3: train

# 需要导入模块: from keras import callbacks [as 别名]
# 或者: from keras.callbacks import ProgbarLogger [as 别名]
def train(self, epochs, steps_per_epoch, initial_epoch=0,
            end_of_epoch_callback=None, verbose=1):

        epoch = initial_epoch

        logger = ProgbarLogger(count_mode='steps')
        logger.set_params({
            'epochs': epochs,
            'steps': steps_per_epoch,
            'verbose': verbose,
            'metrics': self.metric_names})
        logger.on_train_begin()

        while epoch < epochs:
            step = 0
            batch = 0

            logger.on_epoch_begin(epoch)

            while step < steps_per_epoch:

                self.batch_logs['batch'] = batch
                logger.on_batch_begin(batch, self.batch_logs)

                for i in range(len(self.models)):
                    x, y = next(self.output_generators[i])
                    outs = self.models[i].train_on_batch(x, y)

                    if not isinstance(outs, list):
                        outs = [outs]
                    if self.print_full_losses:
                        for l, o in zip(self.metric_names, outs):
                            self.batch_logs[l] = o
                    else:
                        self.batch_logs[self.metric_names[i]] = outs[0]

                logger.on_batch_end(batch, self.batch_logs)

                step += 1
                batch += 1

            logger.on_epoch_end(epoch)
            if end_of_epoch_callback is not None:
                end_of_epoch_callback(epoch)

            epoch += 1 
开发者ID:dluvizon,项目名称:deephar,代码行数:48,代码来源:trainer.py

示例4: _prepare_callbacks

# 需要导入模块: from keras import callbacks [as 别名]
# 或者: from keras.callbacks import ProgbarLogger [as 别名]
def _prepare_callbacks(self,
                           callbacks: List[Callback],
                           val_ins: List[numpy.array],
                           epochs: int,
                           batch_size: int,
                           num_train_samples: int,
                           callback_metrics: List[str],
                           do_validation: bool,
                           verbose: int):

        """
        Sets up Keras callbacks to perform various monitoring functions during training.
        """

        self.history = History()  # pylint: disable=attribute-defined-outside-init
        callbacks = [BaseLogger()] + (callbacks or []) + [self.history]
        if verbose:
            callbacks += [ProgbarLogger()]
        callbacks = CallbackList(callbacks)

        # it's possible to callback a different model than self
        # (used by Sequential models).
        if hasattr(self, 'callback_model') and self.callback_model:
            callback_model = self.callback_model
        else:
            callback_model = self  # pylint: disable=redefined-variable-type

        callbacks.set_model(callback_model)
        callbacks.set_params({
                'batch_size': batch_size,
                'epochs': epochs,
                'samples': num_train_samples,
                'verbose': verbose,
                'do_validation': do_validation,
                'metrics': callback_metrics or [],
        })
        callbacks.on_train_begin()
        callback_model.stop_training = False
        for cbk in callbacks:
            cbk.validation_data = val_ins

        return callbacks, callback_model 
开发者ID:allenai,项目名称:deep_qa,代码行数:44,代码来源:models.py


注:本文中的keras.callbacks.ProgbarLogger方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。