当前位置: 首页>>代码示例>>Python>>正文


Python callbacks.History方法代码示例

本文整理汇总了Python中keras.callbacks.History方法的典型用法代码示例。如果您正苦于以下问题:Python callbacks.History方法的具体用法?Python callbacks.History怎么用?Python callbacks.History使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在keras.callbacks的用法示例。


在下文中一共展示了callbacks.History方法的9个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: fit_generator

# 需要导入模块: from keras import callbacks [as 别名]
# 或者: from keras.callbacks import History [as 别名]
def fit_generator(self, **kwargs) -> History:
        """
        Trains classifiers' model on data generated by a Python generator.

        Args:
            generator: Input samples from a data generator on which to train the model.
            validation_data: Input samples from a data generator on which to evaluate the model.
            epochs: Number of epochs to train the model.
            initial_epoch: Epoch at which to start training.
            verbose: Verbosity mode.
            use_multiprocessing: Use process based threading.
            workers: Maximum number of processes.
            max_queue_size: Maximum size for the generator queue.
            callbacks: List of callbacks to apply during training.

        Returns:
            history: A `History` object.

        """
        return self.model.fit_generator(**kwargs) 
开发者ID:idealo,项目名称:imageatm,代码行数:22,代码来源:image_classifier.py

示例2: fit

# 需要导入模块: from keras import callbacks [as 别名]
# 或者: from keras.callbacks import History [as 别名]
def fit(self, X_train: np.ndarray, y_train: np.ndarray, X_val: np.ndarray, y_val: np.ndarray) -> History:
        """
        This method is used to fit a given training and validation data into our entity embeddings model
        :param X_train: training features
        :param y_train: training targets
        :param X_val: validation features
        :param y_val: validation targets
        :return a History object
        """

        self.max_log_y = max(np.max(np.log(y_train)), np.max(np.log(y_val)))

        history = self.model.fit(x=transpose_to_list(X_train),
                                 y=self._val_for_fit(y_train),
                                 validation_data=(transpose_to_list(X_val), self._val_for_fit(y_val)),
                                 epochs=self.config.epochs,
                                 batch_size=self.config.batch_size, )
        return history 
开发者ID:rodrigobressan,项目名称:entity_embeddings_categorical,代码行数:20,代码来源:network.py

示例3: make_plot_from_history

# 需要导入模块: from keras import callbacks [as 别名]
# 或者: from keras.callbacks import History [as 别名]
def make_plot_from_history(history: History,
                           output_path: str = None,
                           extension: str = 'pdf') -> Figure:
    """
    Used to make a Figure object containing the loss curve between the epochs.
    :param history: the history outputted from the model.fit method
    :param output_path: (optional) where the image will be saved
    :param extension: (optional) the extension of the file
    :return: a Figure object containing the plot
    """
    loss = history.history['loss']

    fig = plt.figure(figsize=(10, 10))
    plt.xlabel("Epochs")
    plt.ylabel("Loss")

    plt.plot(loss)

    if output_path:
        os.makedirs(output_path, exist_ok=True)
        plt.savefig(os.path.join(output_path, PLOT_LOSS_FORMAT % extension))

    return fig 
开发者ID:rodrigobressan,项目名称:entity_embeddings_categorical,代码行数:25,代码来源:visualization_utils.py

示例4: train_data

# 需要导入模块: from keras import callbacks [as 别名]
# 或者: from keras.callbacks import History [as 别名]
def train_data(self, data_feature, window, LabelColumnName):
        # history = History()
        
        #X_train, y_train, X_test, y_test = self.prepare_train_test_data(data_feature, LabelColumnName)
        X_train, y_train, X_test, y_test = self.prepare_train_data(data_feature, LabelColumnName)
        model = self.build_model(window, X_train, y_train, X_test, y_test)

        model.fit(
            X_train,
            y_train,
            batch_size=self.paras.batch_size,
            epochs=self.paras.epoch,
            # validation_split=self.paras.validation_split,
            # validation_data = (X_known_lately, y_known_lately),
            # callbacks=[history],
            # shuffle=True,
            verbose=self.paras.verbose
        )
        # save model
        self.save_training_model(model, window)
        recall_train, tmp = self.predict(model, X_train, y_train)
        # print('train recall is', recall_train)
        # print(' ############## validation on test data ############## ')
        recall_test, tmp = self.predict(model, X_test, y_test)
        # print('test recall is',recall_test)

        # plot training loss/ validation loss
        if self.paras.plot:
            self.plot_training_curve(history)

        return model


    ###################################
    ###                             ###
    ###         Predicting          ###
    ###                             ###
    ################################### 
开发者ID:doncat99,项目名称:StockRecommendSystem,代码行数:40,代码来源:Stock_Prediction_Model_Stateless_LSTM.py

示例5: main

# 需要导入模块: from keras import callbacks [as 别名]
# 或者: from keras.callbacks import History [as 别名]
def main():
    global_start_time = time.time()
    print('> Loading data... ')
    # mm_scaler, X_train, y_train, X_test, y_test = load_data()
    X_train, y_train, X_test, y_test = load_data()
    print('> Data Loaded. Compiling...')

    model = build_model()
    print(model.summary())

    # keras.callbacks.History记录每个epochs的loss及val_loss
    hist = History()
    model.fit(X_train, y_train, batch_size=Conf.BATCH_SIZE, epochs=Conf.EPOCHS, shuffle=True,
              validation_split=0.05, callbacks=[hist])

    # 控制台打印历史loss及val_loss
    print(hist.history['loss'])
    print(hist.history['val_loss'])

    # 可视化历史loss及val_loss
    plot_loss(hist.history['loss'], hist.history['val_loss'])
    # predicted = predict_by_days(model, X_test, 20)
    predicted = predict_by_day(model, X_test)

    print('Training duration (s) : ', time.time() - global_start_time)

    # predicted = inverse_trans(mm_scaler, predicted)
    # y_test = inverse_trans(mm_scaler, y_test)

    # 模型评估
    model_evaluation(pd.DataFrame(predicted), pd.DataFrame(y_test))

    # 预测结果可视化
    model_visualization(y_test, predicted) 
开发者ID:liyinwei,项目名称:copper_price_forecast,代码行数:36,代码来源:co_lstm_predict_day.py

示例6: main

# 需要导入模块: from keras import callbacks [as 别名]
# 或者: from keras.callbacks import History [as 别名]
def main():
    global_start_time = time.time()
    print('> Loading data... ')
    # mm_scaler, X_train, y_train, X_test, y_test = load_data()
    X_train, y_train, X_test, y_test = load_data()
    print('> Data Loaded. Compiling...')

    model = build_model()
    print(model.summary())

    # keras.callbacks.History记录每个epochs的loss及val_loss
    hist = History()
    model.fit(X_train, y_train, batch_size=Conf.BATCH_SIZE, epochs=Conf.EPOCHS, shuffle=True,
              validation_split=0.05, callbacks=[hist])

    # 控制台打印历史loss及val_loss
    print(hist.history['loss'])
    print(hist.history['val_loss'])

    # 可视化历史loss及val_loss
    plot_loss(hist.history['loss'], hist.history['val_loss'])
    # predicted = predict_by_days(model, X_test, 20)
    predicted = predict_by_day(model, X_test)

    print('Training duration (s) : ', time.time() - global_start_time)

    # predicted = inverse_trans(mm_scaler, predicted)
    # y_test = inverse_trans(mm_scaler, y_test)

    # 模型评估
    model_evaluation_multi_step(pd.DataFrame(predicted), pd.DataFrame(y_test))

    # 预测结果可视化
    model_visulaization_multi_step(y_test, predicted) 
开发者ID:liyinwei,项目名称:copper_price_forecast,代码行数:36,代码来源:co_lstm_predict_sequence.py

示例7: predict_generator

# 需要导入模块: from keras import callbacks [as 别名]
# 或者: from keras.callbacks import History [as 别名]
def predict_generator(self, data_generator: DataGenerator, **kwargs) -> History:
        """
        Generates predictions for the input samples from a data generator.

        Args:
            data_generator: Input samples from a data generator.
            workers: Maximum number of processes.
            use_multiprocessing: Use process based threading.
            verbose: Verbosity mode.

        Returns:
            history: A `History` object.
        """
        return self.model.predict_generator(data_generator, **kwargs) 
开发者ID:idealo,项目名称:imageatm,代码行数:16,代码来源:image_classifier.py

示例8: _train_and_eval_single

# 需要导入模块: from keras import callbacks [as 别名]
# 或者: from keras.callbacks import History [as 别名]
def _train_and_eval_single(train, valid, model,
                           batch_size=32, epochs=300, use_weight=False,
                           callbacks=[], eval_best=False, add_eval_metrics={}, custom_objects=None):
    """Fit and evaluate a keras model

    eval_best: if True, load the checkpointed model for evaluation
    """
    def _format_keras_history(history):
        """nicely format keras history
        """
        return {"params": history.params,
                "loss": merge_dicts({"epoch": history.epoch}, history.history),
                }
    if use_weight:
        sample_weight = train[2]
    else:
        sample_weight = None
    # train the model
    logger.info("Fit...")
    history = History()
    model.fit(train[0], train[1],
              batch_size=batch_size,
              validation_data=valid[:2],
              epochs=epochs,
              sample_weight=sample_weight,
              verbose=2,
              callbacks=[history] + callbacks)

    # get history
    hist = _format_keras_history(history)
    # load and eval the best model
    if eval_best:
        mcp = [x for x in callbacks if isinstance(x, ModelCheckpoint)]
        assert len(mcp) == 1
        model = load_model(mcp[0].filepath, custom_objects=custom_objects)

    return eval_model(model, valid, add_eval_metrics), hist 
开发者ID:Avsecz,项目名称:kopt,代码行数:39,代码来源:hyopt.py

示例9: _prepare_callbacks

# 需要导入模块: from keras import callbacks [as 别名]
# 或者: from keras.callbacks import History [as 别名]
def _prepare_callbacks(self,
                           callbacks: List[Callback],
                           val_ins: List[numpy.array],
                           epochs: int,
                           batch_size: int,
                           num_train_samples: int,
                           callback_metrics: List[str],
                           do_validation: bool,
                           verbose: int):

        """
        Sets up Keras callbacks to perform various monitoring functions during training.
        """

        self.history = History()  # pylint: disable=attribute-defined-outside-init
        callbacks = [BaseLogger()] + (callbacks or []) + [self.history]
        if verbose:
            callbacks += [ProgbarLogger()]
        callbacks = CallbackList(callbacks)

        # it's possible to callback a different model than self
        # (used by Sequential models).
        if hasattr(self, 'callback_model') and self.callback_model:
            callback_model = self.callback_model
        else:
            callback_model = self  # pylint: disable=redefined-variable-type

        callbacks.set_model(callback_model)
        callbacks.set_params({
                'batch_size': batch_size,
                'epochs': epochs,
                'samples': num_train_samples,
                'verbose': verbose,
                'do_validation': do_validation,
                'metrics': callback_metrics or [],
        })
        callbacks.on_train_begin()
        callback_model.stop_training = False
        for cbk in callbacks:
            cbk.validation_data = val_ins

        return callbacks, callback_model 
开发者ID:allenai,项目名称:deep_qa,代码行数:44,代码来源:models.py


注:本文中的keras.callbacks.History方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。