本文整理汇总了Python中keras.callbacks.EarlyStopping方法的典型用法代码示例。如果您正苦于以下问题:Python callbacks.EarlyStopping方法的具体用法?Python callbacks.EarlyStopping怎么用?Python callbacks.EarlyStopping使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类keras.callbacks
的用法示例。
在下文中一共展示了callbacks.EarlyStopping方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: train
# 需要导入模块: from keras import callbacks [as 别名]
# 或者: from keras.callbacks import EarlyStopping [as 别名]
def train(self, X, y, validation_data):
print('Training model...')
multitask = y.shape[1] > 1
if not multitask:
num_positives = y.sum()
num_sequences = len(y)
num_negatives = num_sequences - num_positives
self.model.fit(
X,
y,
batch_size=128,
nb_epoch=100,
validation_data=validation_data,
class_weight={
True: num_sequences / num_positives,
False: num_sequences / num_negatives
} if not multitask else None,
callbacks=[EarlyStopping(monitor='val_loss', patience=10)],
verbose=True)
示例2: train_sequential
# 需要导入模块: from keras import callbacks [as 别名]
# 或者: from keras.callbacks import EarlyStopping [as 别名]
def train_sequential(model, X, y, where_to_save, fit_params=None, monitor='val_acc'):
# TODO: DOCUMENT once thoroughly tested
# Watch out: where_to_save might be inside fit_params
if fit_params is None:
fit_params = {
"batch_size": 32,
"nb_epoch": 45,
"verbose": True,
"validation_split": 0.15,
"show_accuracy": True,
"callbacks": [EarlyStopping(verbose=True, patience=5, monitor=monitor),
ModelCheckpoint(where_to_save, monitor=monitor, verbose=True, save_best_only=True)]
}
print 'Fitting! Hit CTRL-C to stop early...'
history = "Nothing to show"
try:
history = model.fit(X, y, **fit_params)
except KeyboardInterrupt:
print "Training stopped early!"
history = model.history
return history
示例3: train_model
# 需要导入模块: from keras import callbacks [as 别名]
# 或者: from keras.callbacks import EarlyStopping [as 别名]
def train_model(self):
checkpoint = ModelCheckpoint(self.PATH, monitor='val_loss', verbose=1, save_best_only=True, mode='auto')
if self.modality == "audio":
model = self.get_audio_model()
model.compile(optimizer='adadelta', loss='categorical_crossentropy', sample_weight_mode='temporal')
elif self.modality == "text":
model = self.get_text_model()
model.compile(optimizer='adadelta', loss='categorical_crossentropy', sample_weight_mode='temporal')
elif self.modality == "bimodal":
model = self.get_bimodal_model()
model.compile(optimizer='adam', loss='categorical_crossentropy', sample_weight_mode='temporal')
early_stopping = EarlyStopping(monitor='val_loss', patience=10)
model.fit(self.train_x, self.train_y,
epochs=self.epochs,
batch_size=self.batch_size,
sample_weight=self.train_mask,
shuffle=True,
callbacks=[early_stopping, checkpoint],
validation_data=(self.val_x, self.val_y, self.val_mask))
self.test_model()
示例4: LSTM
# 需要导入模块: from keras import callbacks [as 别名]
# 或者: from keras.callbacks import EarlyStopping [as 别名]
def LSTM(self, argsDict):
self.paras.batch_size = argsDict["batch_size"]
self.paras.model['dropout'] = argsDict['dropout']
self.paras.model['activation'] = argsDict["activation"]
self.paras.model['optimizer'] = argsDict["optimizer"]
self.paras.model['learning_rate'] = argsDict["learning_rate"]
print(self.paras.batch_size, self.paras.model['dropout'], self.paras.model['activation'], self.paras.model['optimizer'], self.paras.model['learning_rate'])
model = self.lstm_model()
model.fit(self.train_x, self.train_y,
batch_size=self.paras.batch_size,
epochs=self.paras.epoch,
verbose=0,
callbacks=[EarlyStopping(monitor='loss', patience=5)]
)
score, mse = model.evaluate(self.test_x, self.test_y, verbose=0)
y_pred=model.predict(self.test_x)
reca=Recall_s(self.test_y,y_pred)
return -reca
示例5: train
# 需要导入模块: from keras import callbacks [as 别名]
# 或者: from keras.callbacks import EarlyStopping [as 别名]
def train(model, image_data, y_true, log_dir='logs/'):
'''retrain/fine-tune the model'''
model.compile(optimizer='adam', loss={
# use custom yolo_loss Lambda layer.
'yolo_loss': lambda y_true, y_pred: y_pred})
logging = TensorBoard(log_dir=log_dir)
checkpoint = ModelCheckpoint(log_dir + "ep{epoch:03d}-loss{loss:.3f}-val_loss{val_loss:.3f}.h5",
monitor='val_loss', save_weights_only=True, save_best_only=True)
early_stopping = EarlyStopping(monitor='val_loss', min_delta=0, patience=5, verbose=1, mode='auto')
model.fit([image_data, *y_true],
np.zeros(len(image_data)),
validation_split=.1,
batch_size=32,
epochs=30,
callbacks=[logging, checkpoint, early_stopping])
model.save_weights(log_dir + 'trained_weights.h5')
# Further training.
示例6: train_model
# 需要导入模块: from keras import callbacks [as 别名]
# 或者: from keras.callbacks import EarlyStopping [as 别名]
def train_model(self,model,X_train,X_test,y_train,y_test):
input_y_train = self.include_start_token(y_train)
print(input_y_train.shape)
input_y_test = self.include_start_token(y_test)
print(input_y_test.shape)
early = EarlyStopping(monitor='val_loss',patience=10,mode='auto')
checkpoint = ModelCheckpoint(self.outpath + 's2s_model_' + str(self.version) + '_.h5',monitor='val_loss',verbose=1,save_best_only=True,mode='auto')
lr_reduce = ReduceLROnPlateau(monitor='val_loss',factor=0.5, patience=2, verbose=0, mode='auto')
model.fit([X_train,input_y_train],y_train,
epochs=self.epochs,
batch_size=self.batch_size,
validation_data=[[X_test,input_y_test],y_test],
callbacks=[early,checkpoint,lr_reduce],
shuffle=True)
return model
示例7: NerCallbacks
# 需要导入模块: from keras import callbacks [as 别名]
# 或者: from keras.callbacks import EarlyStopping [as 别名]
def NerCallbacks(id_to_tag, best_fit_params=None, mask_tag=None, log_path=None):
"""模型训练过程中的回调函数
"""
callbacks = [Accuracy(id_to_tag, mask_tag, log_path)]
if best_fit_params is not None:
early_stopping = EarlyStopping(
monitor="val_crf_accuracy",
patience=best_fit_params.get("early_stop_patience"))
reduce_lr_on_plateau = ReduceLROnPlateau(
monitor="val_crf_accuracy", verbose=1, mode="max",
factor=best_fit_params.get("reduce_lr_factor"),
patience=best_fit_params.get("reduce_lr_patience"))
model_check_point = ModelCheckpoint(
best_fit_params.get("save_path"),
monitor="val_crf_accuracy", verbose=2, mode="max", save_best_only=True)
callbacks.extend([early_stopping, reduce_lr_on_plateau, model_check_point])
return callbacks
示例8: train
# 需要导入模块: from keras import callbacks [as 别名]
# 或者: from keras.callbacks import EarlyStopping [as 别名]
def train():
# load data
train_dataset = Dataset(training=True)
dev_dataset = Dataset(training=False)
# model
MODEL = name_model[model_name]
model = MODEL(train_dataset.vocab_size, conf.n_classes, train_dataset.emb_mat)
# callback
my_callback = MyCallback()
f1 = F1(dev_dataset.gen_batch_data(), dev_dataset.steps_per_epoch)
checkpointer = ModelCheckpoint('data/{}.hdf5'.format(model_name), save_best_only=True)
early_stop = EarlyStopping(monitor='val_loss', patience=5, verbose=0, mode='auto')
# train
model.compile(optimizer=keras.optimizers.Adam(),
loss=keras.losses.categorical_crossentropy, metrics=['acc'])
model.fit_generator(train_dataset.gen_batch_data(),
steps_per_epoch=train_dataset.steps_per_epoch,
verbose=0,
epochs=conf.epochs, callbacks=[my_callback, checkpointer, early_stop, f1])
keras.models.save_model(model, conf.model_path.format(model_name))
示例9: train
# 需要导入模块: from keras import callbacks [as 别名]
# 或者: from keras.callbacks import EarlyStopping [as 别名]
def train(model, max_len=200000, batch_size=64, verbose=True, epochs=100, save_path='../saved/', save_best=True):
# callbacks
ear = EarlyStopping(monitor='val_acc', patience=5)
mcp = ModelCheckpoint(join(save_path, 'malconv.h5'),
monitor="val_acc",
save_best_only=save_best,
save_weights_only=False)
history = model.fit_generator(
utils.data_generator(x_train, y_train, max_len, batch_size, shuffle=True),
steps_per_epoch=len(x_train)//batch_size + 1,
epochs=epochs,
verbose=verbose,
callbacks=[ear, mcp],
validation_data=utils.data_generator(x_test, y_test, max_len, batch_size),
validation_steps=len(x_test)//batch_size + 1)
return history
示例10: finetuning_callbacks
# 需要导入模块: from keras import callbacks [as 别名]
# 或者: from keras.callbacks import EarlyStopping [as 别名]
def finetuning_callbacks(checkpoint_path, patience, verbose):
""" Callbacks for model training.
# Arguments:
checkpoint_path: Where weight checkpoints should be saved.
patience: Number of epochs with no improvement after which
training will be stopped.
# Returns:
Array with training callbacks that can be passed straight into
model.fit() or similar.
"""
cb_verbose = (verbose >= 2)
checkpointer = ModelCheckpoint(monitor='val_loss', filepath=checkpoint_path,
save_best_only=True, verbose=cb_verbose)
earlystop = EarlyStopping(monitor='val_loss', patience=patience,
verbose=cb_verbose)
return [checkpointer, earlystop]
示例11: init_logging_callbacks
# 需要导入模块: from keras import callbacks [as 别名]
# 或者: from keras.callbacks import EarlyStopping [as 别名]
def init_logging_callbacks(self,log_dir=LOG_DIR_ROOT):
self.checkpoint = ModelCheckpoint(filepath="%s/weights-improvement-{epoch:02d}-{loss:.4f}.hdf5" % (log_dir),\
monitor='loss',\
verbose=1,\
save_best_only=True,\
mode='min')
self.early_stopping = EarlyStopping(monitor='loss',\
min_delta=0,\
patience=PATIENCE,\
verbose=0,\
mode='auto')
now = datetime.utcnow().strftime("%Y%m%d%H%M%S")
log_dir = "{}/run/{}".format(LOG_DIR_ROOT,now)
self.tensorboard = TensorBoard(log_dir=log_dir,\
write_graph=True,\
write_images=True)
self.callbacks = [self.early_stopping,\
self.tensorboard,\
self.checkpoint]
示例12: get_callbacks
# 需要导入模块: from keras import callbacks [as 别名]
# 或者: from keras.callbacks import EarlyStopping [as 别名]
def get_callbacks(config_data, appendix=''):
ret_callbacks = []
model_stored = False
callbacks = config_data['callbacks']
if K._BACKEND == 'tensorflow':
tensor_board = TensorBoard(log_dir=os.path.join('logging', config_data['tb_log_dir']), histogram_freq=10)
ret_callbacks.append(tensor_board)
for callback in callbacks:
if callback['name'] == 'early_stopping':
ret_callbacks.append(EarlyStopping(monitor=callback['monitor'], patience=callback['patience'], verbose=callback['verbose'], mode=callback['mode']))
elif callback['name'] == 'model_checkpoit':
model_stored = True
path = config_data['output_path']
basename = config_data['output_basename']
base_path = os.path.join(path, basename)
opath = os.path.join(base_path, 'best_model{}.h5'.format(appendix))
save_best = bool(callback['save_best_only'])
ret_callbacks.append(ModelCheckpoint(filepath=opath, verbose=callback['verbose'], save_best_only=save_best, monitor=callback['monitor'], mode=callback['mode']))
return ret_callbacks, model_stored
示例13: test_EarlyStopping_reuse
# 需要导入模块: from keras import callbacks [as 别名]
# 或者: from keras.callbacks import EarlyStopping [as 别名]
def test_EarlyStopping_reuse():
np.random.seed(1337)
patience = 3
data = np.random.random((100, 1))
labels = np.where(data > 0.5, 1, 0)
model = Sequential((
Dense(1, input_dim=1, activation='relu'),
Dense(1, activation='sigmoid'),
))
model.compile(optimizer='sgd', loss='binary_crossentropy', metrics=['accuracy'])
stopper = callbacks.EarlyStopping(monitor='acc', patience=patience)
weights = model.get_weights()
hist = model.fit(data, labels, callbacks=[stopper], epochs=20)
assert len(hist.epoch) >= patience
# This should allow training to go for at least `patience` epochs
model.set_weights(weights)
hist = model.fit(data, labels, callbacks=[stopper], epochs=20)
assert len(hist.epoch) >= patience
示例14: test_EarlyStopping_patience
# 需要导入模块: from keras import callbacks [as 别名]
# 或者: from keras.callbacks import EarlyStopping [as 别名]
def test_EarlyStopping_patience():
class DummyModel(object):
def __init__(self):
self.stop_training = False
early_stop = callbacks.EarlyStopping(monitor='val_loss', patience=2)
early_stop.model = DummyModel()
losses = [0.0860, 0.1096, 0.1040, 0.1019]
# Should stop after epoch 3, as the loss has not improved after patience=2 epochs.
epochs_trained = 0
early_stop.on_train_begin()
for epoch in range(len(losses)):
epochs_trained += 1
early_stop.on_epoch_end(epoch, logs={'val_loss': losses[epoch]})
if early_stop.model.stop_training:
break
assert epochs_trained == 3
示例15: main
# 需要导入模块: from keras import callbacks [as 别名]
# 或者: from keras.callbacks import EarlyStopping [as 别名]
def main(rootdir, case, results):
train_x, train_y, valid_x, valid_y, test_x, test_y = get_data(args.dataset, case)
input_shape = (train_x.shape[1], train_x.shape[2])
num_class = train_y.shape[1]
if not os.path.exists(rootdir):
os.makedirs(rootdir)
filepath = os.path.join(rootdir, str(case) + '.hdf5')
saveto = os.path.join(rootdir, str(case) + '.csv')
optimizer = Adam(lr=args.lr, clipnorm=args.clip)
pred_dir = os.path.join(rootdir, str(case) + '_pred.txt')
if args.train:
model = creat_model(input_shape, num_class)
early_stop = EarlyStopping(monitor='val_acc', patience=15, mode='auto')
reduce_lr = ReduceLROnPlateau(monitor='val_acc', factor=0.1, patience=5, mode='auto', cooldown=3., verbose=1)
checkpoint = ModelCheckpoint(filepath, monitor='val_acc', verbose=1, save_best_only=True, mode='auto')
csv_logger = CSVLogger(saveto)
if args.dataset=='NTU' or args.dataset == 'PKU':
callbacks_list = [csv_logger, checkpoint, early_stop, reduce_lr]
else:
callbacks_list = [csv_logger, checkpoint]
model.compile(loss='categorical_crossentropy', optimizer=optimizer, metrics=['accuracy'])
model.fit(train_x, train_y, validation_data=[valid_x, valid_y], epochs=args.epochs,
batch_size=args.batch_size, callbacks=callbacks_list, verbose=2)
# test
model = creat_model(input_shape, num_class)
model.load_weights(filepath)
model.compile(loss='categorical_crossentropy', optimizer=optimizer, metrics=['accuracy'])
scores = get_activation(model, test_x, test_y, pred_dir, VA=10, par=9)
results.append(round(scores, 2))
开发者ID:microsoft,项目名称:View-Adaptive-Neural-Networks-for-Skeleton-based-Human-Action-Recognition,代码行数:37,代码来源:va-rnn.py