当前位置: 首页>>代码示例>>Python>>正文


Python backend.variable方法代码示例

本文整理汇总了Python中keras.backend.variable方法的典型用法代码示例。如果您正苦于以下问题:Python backend.variable方法的具体用法?Python backend.variable怎么用?Python backend.variable使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在keras.backend的用法示例。


在下文中一共展示了backend.variable方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: build

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import variable [as 别名]
def build(self, input_shape):
		self.input_spec = [InputSpec(shape=input_shape)]
		self.input_dim = input_shape[2]

		self.W = self.init((self.output_dim, 4 * self.input_dim),
		                   name='{}_W'.format(self.name))
		self.U = self.inner_init((self.input_dim, 4 * self.input_dim),
		                         name='{}_U'.format(self.name))
		self.b = K.variable(np.hstack((np.zeros(self.input_dim),
		                               K.get_value(self.forget_bias_init((self.input_dim,))),
		                               np.zeros(self.input_dim),
		                               np.zeros(self.input_dim))),
		                    name='{}_b'.format(self.name))

		self.A = self.init((self.input_dim, self.output_dim),
		                    name='{}_A'.format(self.name))
		self.ba = K.zeros((self.output_dim,), name='{}_ba'.format(self.name))


		self.trainable_weights = [self.W, self.U, self.b, self.A, self.ba]

		if self.initial_weights is not None:
			self.set_weights(self.initial_weights)
			del self.initial_weights 
开发者ID:bnsnapper,项目名称:keras_bn_library,代码行数:26,代码来源:recurrent.py

示例2: __init__

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import variable [as 别名]
def __init__(self, lr=0.001, beta_1=0.9, beta_2=0.999,
                 epsilon=None, decay=0., amsgrad=False, accum_iters=1, **kwargs):
        if accum_iters < 1:
            raise ValueError('accum_iters must be >= 1')
        super(AdamAccumulate, self).__init__(**kwargs)
        with K.name_scope(self.__class__.__name__):
            self.iterations = K.variable(0, dtype='int64', name='iterations')
            self.lr = K.variable(lr, name='lr')
            self.beta_1 = K.variable(beta_1, name='beta_1')
            self.beta_2 = K.variable(beta_2, name='beta_2')
            self.decay = K.variable(decay, name='decay')
        if epsilon is None:
            epsilon = K.epsilon()
        self.epsilon = epsilon
        self.initial_decay = decay
        self.amsgrad = amsgrad
        self.accum_iters = K.variable(accum_iters, K.dtype(self.iterations))
        self.accum_iters_float = K.cast(self.accum_iters, K.floatx()) 
开发者ID:emilwallner,项目名称:Coloring-greyscale-images,代码行数:20,代码来源:AdamAccumulate.py

示例3: get_total_loss

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import variable [as 别名]
def get_total_loss(content_losses, style_losses, total_var_loss,
                   content_weights, style_weights, tv_weights, class_targets):
    total_loss = K.variable(0.)

    # Compute content losses
    for loss in content_losses:
        weighted_loss = K.mean(K.gather(content_weights, class_targets) * loss)
        weighted_content_losses.append(weighted_loss)
        total_loss += weighted_loss

    # Compute style losses
    for loss in style_losses:
        weighted_loss = K.mean(K.gather(style_weights, class_targets) * loss)
        weighted_style_losses.append(weighted_loss)
        total_loss += weighted_loss

    # Compute tv loss
    weighted_tv_loss = K.mean(K.gather(tv_weights, class_targets) *
                              total_var_loss)
    total_loss += weighted_tv_loss

    return (total_loss, weighted_content_losses, weighted_style_losses,
            weighted_tv_loss) 
开发者ID:robertomest,项目名称:neural-style-keras,代码行数:25,代码来源:training.py

示例4: build

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import variable [as 别名]
def build(self, input_shape):
        # Create mean and count
        # These are weights because just maintaining variables don't get saved with the model, and we'd like
        # to have these numbers saved when we save the model.
        # But we need to make sure that the weights are untrainable.
        self.mean = self.add_weight(name='mean', 
                                      shape=input_shape[1:],
                                      initializer='zeros',
                                      trainable=False)
        self.count = self.add_weight(name='count', 
                                      shape=[1],
                                      initializer='zeros',
                                      trainable=False)

        # self.mean = K.zeros(input_shape[1:], name='mean')
        # self.count = K.variable(0.0, name='count')
        super(MeanStream, self).build(input_shape)  # Be sure to call this somewhere! 
开发者ID:voxelmorph,项目名称:voxelmorph,代码行数:19,代码来源:layers.py

示例5: __init__

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import variable [as 别名]
def __init__(self, lr=0.001, final_lr=0.1, beta_1=0.9, beta_2=0.999, gamma=1e-3,
                 epsilon=None, decay=0., amsbound=False, weight_decay=0.0, **kwargs):
        super(AdaBound, self).__init__(**kwargs)

        if not 0. <= gamma <= 1.:
            raise ValueError("Invalid `gamma` parameter. Must lie in [0, 1] range.")

        with K.name_scope(self.__class__.__name__):
            self.iterations = K.variable(0, dtype='int64', name='iterations')
            self.lr = K.variable(lr, name='lr')
            self.beta_1 = K.variable(beta_1, name='beta_1')
            self.beta_2 = K.variable(beta_2, name='beta_2')
            self.decay = K.variable(decay, name='decay')

        self.final_lr = final_lr
        self.gamma = gamma

        if epsilon is None:
            epsilon = K.epsilon()
        self.epsilon = epsilon
        self.initial_decay = decay
        self.amsbound = amsbound

        self.weight_decay = float(weight_decay)
        self.base_lr = float(lr) 
开发者ID:titu1994,项目名称:keras-adabound,代码行数:27,代码来源:adabound.py

示例6: find_analogy_patches

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import variable [as 别名]
def find_analogy_patches(a, a_prime, b, patch_size=3, patch_stride=1):
    '''This is for precalculating the analogy_loss

    Since A, A', and B never change we only need to calculate the patch matches once.
    '''
    # extract patches from feature maps
    a_patches, a_patches_norm = patches.make_patches(K.variable(a), patch_size, patch_stride)
    a_prime_patches, a_prime_patches_norm = patches.make_patches(K.variable(a_prime), patch_size, patch_stride)
    b_patches, b_patches_norm = patches.make_patches(K.variable(b), patch_size, patch_stride)
    # find best patches and calculate loss
    p = patches.find_patch_matches(b_patches, b_patches_norm, a_patches / a_patches_norm)
    #best_patches = a_prime_patches[p]
    best_patches = K.reshape(a_prime_patches[p], K.shape(b_patches))
    f = K.function([], best_patches)
    best_patches = f([])
    return best_patches 
开发者ID:awentzonline,项目名称:image-analogies,代码行数:18,代码来源:analogy.py

示例7: __init__

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import variable [as 别名]
def __init__(self, lr=1e-1, beta_1=0.9, beta_2=0.999,
                 epsilon=1e-8, decay=0., amsgrad=False, partial=1. / 8., **kwargs):
        if partial < 0 or partial > 0.5:
            raise ValueError(
                "Padam: 'partial' must be a positive float with a maximum "
                "value of `0.5`, since higher values will cause divergence "
                "during training."
            )
        super(Padam, self).__init__(**kwargs)
        with K.name_scope(self.__class__.__name__):
            self.iterations = K.variable(0, dtype='int64', name='iterations')
            self.lr = K.variable(lr, name='lr')
            self.beta_1 = K.variable(beta_1, name='beta_1')
            self.beta_2 = K.variable(beta_2, name='beta_2')
            self.decay = K.variable(decay, name='decay')
        if epsilon is None:
            epsilon = K.epsilon()
        self.epsilon = epsilon
        self.partial = partial
        self.initial_decay = decay
        self.amsgrad = amsgrad 
开发者ID:keras-team,项目名称:keras-contrib,代码行数:23,代码来源:padam.py

示例8: __init__

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import variable [as 别名]
def __init__(self,
                 lr,
                 momentum=0.9,
                 weight_decay=0.0001,
                 eeta=0.001,
                 epsilon=0.0,
                 nesterov=False,
                 **kwargs):

        if momentum < 0.0:
            raise ValueError("momentum should be positive: %s" % momentum)
        if weight_decay < 0.0:
            raise ValueError("weight_decay is not positive: %s" % weight_decay)
        super(LARS, self).__init__(**kwargs)
        with K.name_scope(self.__class__.__name__):
            self.iterations = K.variable(0, dtype='int64', name='iterations')
            self.lr = K.variable(lr, name='lr')
            self.momentum = K.variable(momentum, name='momentum')
            self.weight_decay = K.variable(weight_decay, name='weight_decay')
            self.eeta = K.variable(eeta, name='eeta')
        self.epsilon = epsilon
        self.nesterov = nesterov 
开发者ID:keras-team,项目名称:keras-contrib,代码行数:24,代码来源:lars.py

示例9: __init__

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import variable [as 别名]
def __init__(self, lr=0.01, beta_1=0.9, beta_2=0.999,
                 epsilon=1e-3, decay=0., **kwargs):
        super(Yogi, self).__init__(**kwargs)
        if beta_1 <= 0 or beta_1 >= 1:
            raise ValueError("beta_1 has to be in ]0, 1[")
        if beta_2 <= 0 or beta_2 >= 1:
            raise ValueError("beta_2 has to be in ]0, 1[")

        with K.name_scope(self.__class__.__name__):
            self.iterations = K.variable(0, dtype='int64', name='iterations')
            self.lr = K.variable(lr, name='lr')
            self.beta_1 = K.variable(beta_1, name='beta_1')
            self.beta_2 = K.variable(beta_2, name='beta_2')
            self.decay = K.variable(decay, name='decay')
        if epsilon is None:
            epsilon = K.epsilon()
        if epsilon <= 0:
            raise ValueError("epsilon has to be larger than 0")
        self.epsilon = epsilon
        self.initial_decay = decay 
开发者ID:keras-team,项目名称:keras-contrib,代码行数:22,代码来源:yogi.py

示例10: test_sub_pixel_upscaling

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import variable [as 别名]
def test_sub_pixel_upscaling(scale_factor):
    num_samples = 2
    num_row = 16
    num_col = 16
    input_dtype = K.floatx()

    nb_channels = 4 * (scale_factor ** 2)
    input_data = np.random.random((num_samples, nb_channels, num_row, num_col))
    input_data = input_data.astype(input_dtype)

    if K.image_data_format() == 'channels_last':
        input_data = input_data.transpose((0, 2, 3, 1))

    input_tensor = K.variable(input_data)
    expected_output = K.eval(KC.depth_to_space(input_tensor,
                                               scale=scale_factor))

    layer_test(SubPixelUpscaling,
               kwargs={'scale_factor': scale_factor},
               input_data=input_data,
               expected_output=expected_output,
               expected_output_dtype=K.floatx()) 
开发者ID:keras-team,项目名称:keras-contrib,代码行数:24,代码来源:test_subpixelupscaling.py

示例11: check_composed_tensor_operations

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import variable [as 别名]
def check_composed_tensor_operations(first_function_name, first_function_args,
                                     second_function_name, second_function_args,
                                     input_shape):
    ''' Creates a random tensor t0 with shape input_shape and compute
                 t1 = first_function_name(t0, **first_function_args)
                 t2 = second_function_name(t1, **second_function_args)
        with both Theano and TensorFlow backends and ensures the answers match.
    '''
    val = np.random.random(input_shape) - 0.5
    xth = KTH.variable(val)
    xtf = KTF.variable(val)

    yth = getattr(KCTH, first_function_name)(xth, **first_function_args)
    ytf = getattr(KCTF, first_function_name)(xtf, **first_function_args)

    zth = KTH.eval(getattr(KCTH, second_function_name)(yth, **second_function_args))
    ztf = KTF.eval(getattr(KCTF, second_function_name)(ytf, **second_function_args))

    assert zth.shape == ztf.shape
    assert_allclose(zth, ztf, atol=1e-05) 
开发者ID:keras-team,项目名称:keras-contrib,代码行数:22,代码来源:backend_test.py

示例12: __init__

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import variable [as 别名]
def __init__(self, s=3, skip=True):
        self.skip = skip
        self.s = K.variable(s, name='s_constraint') 
开发者ID:textclf,项目名称:fancy-cnn,代码行数:5,代码来源:embeddings.py

示例13: __init__

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import variable [as 别名]
def __init__(self):
        self.gamma = K.variable(2.) 
开发者ID:zxq2233,项目名称:n2n-watermark-remove,代码行数:4,代码来源:model.py

示例14: yolo_eval

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import variable [as 别名]
def yolo_eval(yolo_outputs,
              image_shape,
              max_boxes=10,
              score_threshold=.6,
              iou_threshold=.5):
    """Evaluate YOLO model on given input batch and return filtered boxes."""
    box_xy, box_wh, box_confidence, box_class_probs = yolo_outputs
    boxes = yolo_boxes_to_corners(box_xy, box_wh)
    boxes, scores, classes = yolo_filter_boxes(
        boxes, box_confidence, box_class_probs, threshold=score_threshold)

    # Scale boxes back to original image shape.
    height = image_shape[0]
    width = image_shape[1]
    image_dims = K.stack([height, width, height, width])
    image_dims = K.reshape(image_dims, [1, 4])
    boxes = boxes * image_dims

    # TODO: Something must be done about this ugly hack!
    max_boxes_tensor = K.variable(max_boxes, dtype='int32')
    K.get_session().run(tf.variables_initializer([max_boxes_tensor]))
    nms_index = tf.image.non_max_suppression(
        boxes, scores, max_boxes_tensor, iou_threshold=iou_threshold)
    boxes = K.gather(boxes, nms_index)
    scores = K.gather(scores, nms_index)
    classes = K.gather(classes, nms_index)
    return boxes, scores, classes 
开发者ID:PiSimo,项目名称:PiCamNN,代码行数:29,代码来源:keras_yolo.py

示例15: build

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import variable [as 别名]
def build(self, input_shape):
        self.input_spec = [InputSpec(shape=input_shape)]
        shape = (int(input_shape[self.axis]),)

        self.gamma = K.variable(self.gamma_init(shape), name='%s_gamma' % self.name)
        self.beta = K.variable(self.beta_init(shape), name='%s_beta' % self.name)
        self.trainable_weights = [self.gamma, self.beta]

        if self.initial_weights is not None:
            self.set_weights(self.initial_weights)
            del self.initial_weights 
开发者ID:CMU-CREATE-Lab,项目名称:deep-smoke-machine,代码行数:13,代码来源:resnet_152_keras.py


注:本文中的keras.backend.variable方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。