本文整理汇总了Python中keras.backend.tanh方法的典型用法代码示例。如果您正苦于以下问题:Python backend.tanh方法的具体用法?Python backend.tanh怎么用?Python backend.tanh使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类keras.backend
的用法示例。
在下文中一共展示了backend.tanh方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: call
# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import tanh [as 别名]
def call(self, x, mask=None):
uit = dot_product(x, self.W)
if self.bias:
uit += self.b
uit = K.tanh(uit)
ait = dot_product(uit, self.u)
a = K.exp(ait)
# apply mask after the exp. will be re-normalized next
if mask is not None:
# Cast the mask to floatX to avoid float64 upcasting in theano
a *= K.cast(mask, K.floatx())
# in some cases especially in the early stages of training the sum may be almost zero
# and this results in NaN's. A workaround is to add a very small positive number ε to the sum.
# a /= K.cast(K.sum(a, axis=1, keepdims=True), K.floatx())
a /= K.cast(K.sum(a, axis=1, keepdims=True) + K.epsilon(), K.floatx())
a = K.expand_dims(a)
weighted_input = x * a
return K.sum(weighted_input, axis=1)
示例2: call
# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import tanh [as 别名]
def call(self, x, mask=None):
eij = dot_product(x, self.W)
if self.bias:
eij += self.b
eij = K.tanh(eij)
a = K.exp(eij)
if mask is not None:
a *= K.cast(mask, K.floatx())
a /= K.cast(K.sum(a, axis=1, keepdims=True) + K.epsilon(), K.floatx())
weighted_input = x * K.expand_dims(a)
result = K.sum(weighted_input, axis=1)
if self.return_attention:
return [result, a]
return result
示例3: call
# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import tanh [as 别名]
def call(self, x, mask=None):
# size of x :[batch_size, sel_len, attention_dim]
# size of u :[batch_size, attention_dim]
# uit = tanh(xW+b)
uit = K.tanh(K.bias_add(K.dot(x, self.W), self.b))
ait = K.dot(uit, self.u)
ait = K.squeeze(ait, -1)
ait = K.exp(ait)
if mask is not None:
# Cast the mask to floatX to avoid float64 upcasting in theano
ait *= K.cast(mask, K.floatx())
ait /= K.cast(K.sum(ait, axis=1, keepdims=True) + K.epsilon(), K.floatx())
ait = K.expand_dims(ait)
weighted_input = x * ait
output = K.sum(weighted_input, axis=1)
return output
示例4: call
# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import tanh [as 别名]
def call(self, input_tensor, mask=None):
x = input_tensor[0]
y = input_tensor[1]
mask = mask[0]
y = K.transpose(K.dot(self.W, K.transpose(y)))
y = K.expand_dims(y, axis=-2)
y = K.repeat_elements(y, self.steps, axis=1)
eij = K.sum(x * y, axis=-1)
if self.bias:
b = K.repeat_elements(self.b, self.steps, axis=0)
eij += b
eij = K.tanh(eij)
a = K.exp(eij)
if mask is not None:
a *= K.cast(mask, K.floatx())
a /= K.cast(K.sum(a, axis=1, keepdims=True) + K.epsilon(), K.floatx())
return a
示例5: _cosine_distance
# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import tanh [as 别名]
def _cosine_distance(v1, v2, cosine_norm=True, eps=1e-6):
"""
Only requires `tf.reduce_sum(v1 * v2, axis=-1)`.
:param v1: [batch, time_steps(v1), 1, m, d]
:param v2: [batch, 1, time_steps(v2), m, d]
:param cosine_norm: True
:param eps: 1e-6
:return: [batch, time_steps(v1), time_steps(v2), m]
"""
cosine_numerator = tf.reduce_sum(v1 * v2, axis=-1)
if not cosine_norm:
return K.tanh(cosine_numerator)
v1_norm = K.sqrt(tf.maximum(tf.reduce_sum(tf.square(v1), axis=-1), eps))
v2_norm = K.sqrt(tf.maximum(tf.reduce_sum(tf.square(v2), axis=-1), eps))
return cosine_numerator / v1_norm / v2_norm
示例6: __init__
# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import tanh [as 别名]
def __init__(self, nb_filters_in, nb_filters_out, nb_filters_att, nb_rows, nb_cols,
init='normal', inner_init='orthogonal', attentive_init='zero',
activation='tanh', inner_activation='sigmoid',
W_regularizer=None, U_regularizer=None,
weights=None, go_backwards=False,
**kwargs):
self.nb_filters_in = nb_filters_in
self.nb_filters_out = nb_filters_out
self.nb_filters_att = nb_filters_att
self.nb_rows = nb_rows
self.nb_cols = nb_cols
self.init = initializations.get(init)
self.inner_init = initializations.get(inner_init)
self.attentive_init = initializations.get(attentive_init)
self.activation = activations.get(activation)
self.inner_activation = activations.get(inner_activation)
self.initial_weights = weights
self.go_backwards = go_backwards
self.W_regularizer = W_regularizer
self.U_regularizer = U_regularizer
self.input_spec = [InputSpec(ndim=5)]
super(AttentiveConvLSTM, self).__init__(**kwargs)
示例7: step
# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import tanh [as 别名]
def step(self, x, states):
x_shape = K.shape(x)
h_tm1 = states[0]
c_tm1 = states[1]
e = self.V_a(K.tanh(self.W_a(h_tm1) + self.U_a(x)))
a = K.reshape(K.softmax(K.batch_flatten(e)), (x_shape[0], 1, x_shape[2], x_shape[3]))
x_tilde = x * K.repeat_elements(a, x_shape[1], 1)
x_i = self.W_i(x_tilde)
x_f = self.W_f(x_tilde)
x_c = self.W_c(x_tilde)
x_o = self.W_o(x_tilde)
i = self.inner_activation(x_i + self.U_i(h_tm1))
f = self.inner_activation(x_f + self.U_f(h_tm1))
c = f * c_tm1 + i * self.activation(x_c + self.U_c(h_tm1))
o = self.inner_activation(x_o + self.U_o(h_tm1))
h = o * self.activation(c)
return h, [h, c]
示例8: call
# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import tanh [as 别名]
def call(self, x, mask=None):
features_dim = self.features_dim
step_dim = self.step_dim
eij = K.reshape(K.dot(K.reshape(x, (-1, features_dim)),
K.reshape(self.W, (features_dim, 1))), (-1, step_dim))
if self.bias:
eij += self.b
eij = K.tanh(eij)
a = K.exp(eij)
if mask is not None:
a *= K.cast(mask, K.floatx())
a /= K.cast(K.sum(a, axis=1, keepdims=True) + K.epsilon(), K.floatx())
a = K.expand_dims(a)
weighted_input = x * a
return K.sum(weighted_input, axis=1)
示例9: call
# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import tanh [as 别名]
def call(self, input_tensor, mask=None):
x = input_tensor[0]
aspect = input_tensor[1]
mask = mask[0]
aspect = K.transpose(K.dot(self.W, K.transpose(aspect)))
aspect = K.expand_dims(aspect, axis=-2)
aspect = K.repeat_elements(aspect, self.steps, axis=1)
eij = K.sum(x*aspect, axis=-1)
if self.bias:
b = K.repeat_elements(self.b, self.steps, axis=0)
eij += b
eij = K.tanh(eij)
a = K.exp(eij)
if mask is not None:
a *= K.cast(mask, K.floatx())
a /= K.cast(K.sum(a, axis=1, keepdims=True) + K.epsilon(), K.floatx())
return a
示例10: call
# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import tanh [as 别名]
def call(self, h, mask=None):
h_shape = K.shape(h)
d_w, T = h_shape[0], h_shape[1]
logits = K.dot(h, self.w) # w^T h
logits = K.reshape(logits, (d_w, T))
alpha = K.exp(logits - K.max(logits, axis=-1, keepdims=True)) # exp
# masked timesteps have zero weight
if mask is not None:
mask = K.cast(mask, K.floatx())
alpha = alpha * mask
alpha = alpha / K.sum(alpha, axis=1, keepdims=True) # softmax
r = K.sum(h * K.expand_dims(alpha), axis=1) # r = h*alpha^T
h_star = K.tanh(r) # h^* = tanh(r)
if self.return_attention:
return [h_star, alpha]
return h_star
示例11: call
# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import tanh [as 别名]
def call(self, x, mask=None):
uit = K.tanh(K.dot(x, self.Ws1))
ait = K.dot(uit, self.Ws2)
ait = K.permute_dimensions(ait, (0, 2, 1))
A = K.softmax(ait, axis=1)
M = K.batch_dot(A, x)
if self.punish:
A_T = K.permute_dimensions(A, (0, 2, 1))
tile_eye = K.tile(K.eye(self.weight_ws2), [self.batch_size, 1])
tile_eye = K.reshape(
tile_eye, shape=[-1, self.weight_ws2, self.weight_ws2])
AA_T = K.batch_dot(A, A_T) - tile_eye
P = K.l2_normalize(AA_T, axis=(1, 2))
return M, P
else:
return M
示例12: call
# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import tanh [as 别名]
def call(self, x, mask=None):
# MLP
ut = K.dot(x, self.kernel)
if self.use_bias:
ut = K.bias_add(ut, self.bias)
if self.activation:
ut = K.tanh(ut)
if self.context_kernel:
ut = K.dot(ut, self.context_kernel)
ut = K.squeeze(ut, axis=-1)
# softmax
at = K.exp(ut - K.max(ut, axis=-1, keepdims=True))
if mask is not None:
at *= K.cast(mask, K.floatx())
att_weights = at / (K.sum(at, axis=1, keepdims=True) + K.epsilon())
# output
atx = x * K.expand_dims(att_weights, axis=-1)
output = K.sum(atx, axis=1)
if self.return_attention:
return [output, att_weights]
return output
示例13: __init__
# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import tanh [as 别名]
def __init__(self, units, h, h_dim,
kernel_initializer='glorot_uniform', recurrent_initializer='orthogonal',
#activation='tanh', inner_activation='hard_sigmoid',
#W_regularizer=None, U_regularizer=None, b_regularizer=None,
#dropout_W=0., dropout_U=0.,
**kwargs):
self.units = units
self.h = h[:,-1,:]
self.h_dim = h_dim
self.kernel_initializer = initializers.get(kernel_initializer)
self.recurrent_initializer = initializers.get(recurrent_initializer)
#self.activation = activations.get(activation)
#self.inner_activation = activations.get(inner_activation)
#self.W_regularizer = regularizers.get(W_regularizer)
#self.U_regularizer = regularizers.get(U_regularizer)
#self.b_regularizer = regularizers.get(b_regularizer)
#self.dropout_W = dropout_W
#self.dropout_U = dropout_U
#if self.dropout_W or self.dropout_U:
# self.uses_learning_phase = True
super(Attention, self).__init__(**kwargs)
示例14: step
# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import tanh [as 别名]
def step(self, inputs, states):
h_tm1 = states[0] # previous memory
#B_U = states[1] # dropout matrices for recurrent units
#B_W = states[2]
h_tm1a = K.dot(h_tm1, self.Wa)
eij = K.dot(K.tanh(h_tm1a + K.dot(inputs[:, :self.h_dim], self.Ua)), self.Va)
eijs = K.repeat_elements(eij, self.h_dim, axis=1)
#alphaij = K.softmax(eijs) # batchsize * lenh h batchsize * lenh * ndim
#ci = K.permute_dimensions(K.permute_dimensions(self.h, [2,0,1]) * alphaij, [1,2,0])
#cisum = K.sum(ci, axis=1)
cisum = eijs*inputs[:, :self.h_dim]
#print(K.shape(cisum), cisum.shape, ci.shape, self.h.shape, alphaij.shape, x.shape)
zr = K.sigmoid(K.dot(inputs[:, self.h_dim:], self.Wzr) + K.dot(h_tm1, self.Uzr) + K.dot(cisum, self.Czr))
zi = zr[:, :self.units]
ri = zr[:, self.units: 2 * self.units]
si_ = K.tanh(K.dot(inputs[:, self.h_dim:], self.W) + K.dot(ri*h_tm1, self.U) + K.dot(cisum, self.C))
si = (1-zi) * h_tm1 + zi * si_
return si, [si] #h_tm1, [h_tm1]
示例15: _get_attention_weights
# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import tanh [as 别名]
def _get_attention_weights(self, X):
"""
Computes the attention weights for each timestep in X
:param X: 3d-tensor (batch_size, time_steps, input_dim)
:return: 2d-tensor (batch_size, time_steps) of attention weights
"""
# Compute a time-wise stimulus, i.e. a stimulus for each
# time step. For this first compute a hidden layer of
# dimension self.context_vector_length and take the
# similarity of this layer with self.u as the stimulus
u_tw = K.tanh(K.dot(X, self.W))
tw_stimulus = K.dot(u_tw, self.u)
# Remove the last axis an apply softmax to the stimulus to
# get a probability.
tw_stimulus = K.reshape(tw_stimulus, (-1, tw_stimulus.shape[1]))
att_weights = K.softmax(tw_stimulus)
return att_weights