当前位置: 首页>>代码示例>>Python>>正文


Python backend.switch方法代码示例

本文整理汇总了Python中keras.backend.switch方法的典型用法代码示例。如果您正苦于以下问题:Python backend.switch方法的具体用法?Python backend.switch怎么用?Python backend.switch使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在keras.backend的用法示例。


在下文中一共展示了backend.switch方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: time_distributed_nonzero_max_pooling

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import switch [as 别名]
def time_distributed_nonzero_max_pooling(x):
    """
    Computes maximum along the first (time) dimension.
    It ignores the mask m.

    In:
        x - input; a 3D tensor
        mask_value - value to mask out, if None then no masking; 
            by default 0.0, 
    """

    import theano.tensor as T

    mask_value=0.0
    x = T.switch(T.eq(x, mask_value), -numpy.inf, x)
    masked_max_x = x.max(axis=1)
    # replace infinities with mask_value
    masked_max_x = T.switch(T.eq(masked_max_x, -numpy.inf), 0, masked_max_x)
    return masked_max_x 
开发者ID:mateuszmalinowski,项目名称:visual_turing_test-tutorial,代码行数:21,代码来源:keras_extensions.py

示例2: time_distributed_masked_max

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import switch [as 别名]
def time_distributed_masked_max(x, m):
    """
    Computes max along the first (time) dimension.

    In:
        x - input; a 3D tensor
        m - mask
        m_value - value for masking
    """
    # place infinities where mask is off
    m_value = 0.0
    tmp = K.switch(K.equal(m, 0.0), -numpy.inf, 0.0)
    x_with_inf = x + K.expand_dims(tmp)
    x_max = K.max(x_with_inf, axis=1) 
    r = K.switch(K.equal(x_max, -numpy.inf), m_value, x_max)
    return r 


## classes  ##

# Transforms existing layers to masked layers 
开发者ID:mateuszmalinowski,项目名称:visual_turing_test-tutorial,代码行数:23,代码来源:keras_extensions.py

示例3: rpn_class_loss_graph

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import switch [as 别名]
def rpn_class_loss_graph(rpn_match, rpn_class_logits):
    """RPN anchor classifier loss.
    rpn_match: [batch, anchors, 1]. Anchor match type. 1=positive,
               -1=negative, 0=neutral anchor.
    rpn_class_logits: [batch, anchors, 2]. RPN classifier logits for FG/BG.
    """
    # Squeeze last dim to simplify
    rpn_match = tf.squeeze(rpn_match, -1)
    # Get anchor classes. Convert the -1/+1 match to 0/1 values.
    anchor_class = K.cast(K.equal(rpn_match, 1), tf.int32)
    # Positive and Negative anchors contribute to the loss,
    # but neutral anchors (match value = 0) don't.
    indices = tf.where(K.not_equal(rpn_match, 0))
    # Pick rows that contribute to the loss and filter out the rest.
    rpn_class_logits = tf.gather_nd(rpn_class_logits, indices)
    anchor_class = tf.gather_nd(anchor_class, indices)
    # Cross entropy loss
    loss = K.sparse_categorical_crossentropy(target=anchor_class,
                                             output=rpn_class_logits,
                                             from_logits=True)
    loss = K.switch(tf.size(loss) > 0, K.mean(loss), tf.constant(0.0))
    return loss 
开发者ID:dataiku,项目名称:dataiku-contrib,代码行数:24,代码来源:model.py

示例4: rpn_class_loss_graph

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import switch [as 别名]
def rpn_class_loss_graph(rpn_match, rpn_class_logits):
    """RPN anchor classifier loss.

    rpn_match: [batch, anchors, 1]. Anchor match type. 1=positive,
               -1=negative, 0=neutral anchor.
    rpn_class_logits: [batch, anchors, 2]. RPN classifier logits for FG/BG.
    """
    # Squeeze last dim to simplify
    rpn_match = tf.squeeze(rpn_match, -1)
    # Get anchor classes. Convert the -1/+1 match to 0/1 values.
    anchor_class = K.cast(K.equal(rpn_match, 1), tf.int32)
    # Positive and Negative anchors contribute to the loss,
    # but neutral anchors (match value = 0) don't.
    indices = tf.where(K.not_equal(rpn_match, 0))
    # Pick rows that contribute to the loss and filter out the rest.
    rpn_class_logits = tf.gather_nd(rpn_class_logits, indices)
    anchor_class = tf.gather_nd(anchor_class, indices)
    # Cross entropy loss
    loss = K.sparse_categorical_crossentropy(target=anchor_class,
                                             output=rpn_class_logits,
                                             from_logits=True)
    loss = K.switch(tf.size(loss) > 0, K.mean(loss), tf.constant(0.0))
    return loss 
开发者ID:dmechea,项目名称:PanopticSegmentation,代码行数:25,代码来源:model.py

示例5: rpn_class_loss_graph

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import switch [as 别名]
def rpn_class_loss_graph(rpn_match, rpn_class_logits):
    """RPN anchor classifier loss.

    rpn_match: [batch, anchors, 1]. Anchor match type. 1=positive,
               -1=negative, 0=neutral anchor.
    rpn_class_logits: [batch, anchors, 2]. RPN classifier logits for FG/BG.
    """
    # Squeeze last dim to simplify
    rpn_match = tf.squeeze(rpn_match, -1)
    # Get anchor classes. Convert the -1/+1 match to 0/1 values.
    anchor_class = K.cast(K.equal(rpn_match, 1), tf.int32)
    # Positive and Negative anchors contribute to the loss,
    # but neutral anchors (match value = 0) don't.
    indices = tf.where(K.not_equal(rpn_match, 0))
    # Pick rows that contribute to the loss and filter out the rest.
    rpn_class_logits = tf.gather_nd(rpn_class_logits, indices)
    anchor_class = tf.gather_nd(anchor_class, indices)
    # Crossentropy loss
    loss = K.sparse_categorical_crossentropy(target=anchor_class,
                                             output=rpn_class_logits,
                                             from_logits=True)
    loss = K.switch(tf.size(loss) > 0, K.mean(loss), tf.constant(0.0))
    return loss 
开发者ID:SunskyF,项目名称:EasyPR-python,代码行数:25,代码来源:model.py

示例6: _rpn_loss_regr

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import switch [as 别名]
def _rpn_loss_regr(y_true, y_pred):
    """
    smooth L1 loss

    y_ture [1][HXWX10][3] (class,regr)
    y_pred [1][HXWX10][2] (reger)
    """

    sigma = 9.0

    cls = y_true[0, :, 0]
    regr = y_true[0, :, 1:3]
    regr_keep = tf.where(K.equal(cls, 1))[:, 0]
    regr_true = tf.gather(regr, regr_keep)
    regr_pred = tf.gather(y_pred[0], regr_keep)
    diff = tf.abs(regr_true - regr_pred)
    less_one = tf.cast(tf.less(diff, 1.0 / sigma), 'float32')
    loss = less_one * 0.5 * diff ** 2 * sigma + tf.abs(1 - less_one) * (diff - 0.5 / sigma)
    loss = K.sum(loss, axis=1)

    return K.switch(tf.size(loss) > 0, K.mean(loss), K.constant(0.0)) 
开发者ID:GlassyWing,项目名称:text-detection-ocr,代码行数:23,代码来源:core.py

示例7: clip_norm

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import switch [as 别名]
def clip_norm(g, c, n):
    if c > 0:
        if K.backend() == 'tensorflow':
            import tensorflow as tf
            import copy
            condition = n >= c
            then_expression = tf.scalar_mul(c / n, g)
            else_expression = g

            if hasattr(then_expression, 'get_shape'):
                g_shape = copy.copy(then_expression.get_shape())
            elif hasattr(then_expression, 'dense_shape'):
                g_shape = copy.copy(then_expression.dense_shape)
            if condition.dtype != tf.bool:
                condition = tf.cast(condition, 'bool')
            g = K.tensorflow_backend.control_flow_ops.cond(
                condition, lambda: then_expression, lambda: else_expression)
            if hasattr(then_expression, 'get_shape'):
                g.set_shape(g_shape)
            elif hasattr(then_expression, 'dense_shape'):
                g._dense_shape = g_shape
        else:
            g = K.switch(n >= c, g * c / n, g)
    return g 
开发者ID:danieljl,项目名称:keras-image-captioning,代码行数:26,代码来源:keras_patches.py

示例8: f1_score_keras

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import switch [as 别名]
def f1_score_keras(y_true, y_pred):
    #convert probas to 0,1
    y_ppred = K.zeros_like(y_true)
    y_pred_ones = K.T.set_subtensor(y_ppred[K.T.arange(y_true.shape[0]), K.argmax(y_pred, axis=-1)], 1)

    #where y_ture=1 and y_pred=1 -> true positive
    y_true_pred = K.sum(y_true*y_pred_ones, axis=0)

    #for each class: how many where classified as said class
    pred_cnt = K.sum(y_pred_ones, axis=0)

    #for each class: how many are true members of said class
    gold_cnt = K.sum(y_true, axis=0)

    #precision for each class
    precision = K.T.switch(K.T.eq(pred_cnt, 0), 0, y_true_pred/pred_cnt)

    #recall for each class
    recall = K.T.switch(K.T.eq(gold_cnt, 0), 0, y_true_pred/gold_cnt)

    #f1 for each class
    f1_class = K.T.switch(K.T.eq(precision + recall, 0), 0, 2*(precision*recall)/(precision+recall))

    #return average f1 score over all classes
    return K.mean(f1_class) 
开发者ID:spinningbytes,项目名称:deep-mlsa,代码行数:27,代码来源:evaluation_metrics_theano.py

示例9: f1_score_taskB

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import switch [as 别名]
def f1_score_taskB(y_true, y_pred):
    #convert probas to 0,1
    y_pred_ones = K.zeros_like(y_true)
    y_pred_ones[:, K.argmax(y_pred, axis=-1)] = 1

    #where y_ture=1 and y_pred=1 -> true positive
    y_true_pred = K.sum(y_true*y_pred_ones, axis=0)

    #for each class: how many where classified as said class
    pred_cnt = K.sum(y_pred_ones, axis=0)

    #for each class: how many are true members of said class
    gold_cnt = K.sum(y_true, axis=0)

    #precision for each class
    precision = K.switch(K.equal(pred_cnt, 0), 0, y_true_pred/pred_cnt)

    #recall for each class
    recall = K.switch(K.equal(gold_cnt, 0), 0, y_true_pred/gold_cnt)

    #f1 for each class
    f1_class = K.switch(K.equal(precision + recall, 0), 0, 2*(precision*recall)/(precision+recall))

    #return average f1 score over all classes
    return f1_class 
开发者ID:spinningbytes,项目名称:deep-mlsa,代码行数:27,代码来源:evaluation_metrics_theano.py

示例10: f1_score_semeval

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import switch [as 别名]
def f1_score_semeval(y_true, y_pred):
    # convert probas to 0,1
    y_ppred = K.zeros_like(y_true)
    y_pred_ones = K.T.set_subtensor(y_ppred[K.T.arange(y_true.shape[0]), K.argmax(y_pred, axis=-1)], 1)

    # where y_ture=1 and y_pred=1 -> true positive
    y_true_pred = K.sum(y_true * y_pred_ones, axis=0)

    # for each class: how many where classified as said class
    pred_cnt = K.sum(y_pred_ones, axis=0)

    # for each class: how many are true members of said class
    gold_cnt = K.sum(y_true, axis=0)

    # precision for each class
    precision = K.T.switch(K.T.eq(pred_cnt, 0), 0, y_true_pred / pred_cnt)

    # recall for each class
    recall = K.T.switch(K.T.eq(gold_cnt, 0), 0, y_true_pred / gold_cnt)

    # f1 for each class
    f1_class = K.T.switch(K.T.eq(precision + recall, 0), 0, 2 * (precision * recall) / (precision + recall))

    #return average f1 score over all classes
    return (f1_class[0] + f1_class[2])/2.0 
开发者ID:spinningbytes,项目名称:deep-mlsa,代码行数:27,代码来源:evaluation_metrics_theano.py

示例11: precision_keras

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import switch [as 别名]
def precision_keras(y_true, y_pred):
    #convert probas to 0,1
    y_pred_ones = K.zeros_like(y_true)
    y_pred_ones[:, K.argmax(y_pred, axis=-1)] = 1

    #where y_ture=1 and y_pred=1 -> true positive
    y_true_pred = K.sum(y_true*y_pred_ones, axis=0)

    #for each class: how many where classified as said class
    pred_cnt = K.sum(y_pred_ones, axis=0)

    #precision for each class
    precision = K.switch(K.equal(pred_cnt, 0), 0, y_true_pred/pred_cnt)
    
    #return average f1 score over all classes
    return K.mean(precision) 
开发者ID:spinningbytes,项目名称:deep-mlsa,代码行数:18,代码来源:evaluation_metrics_theano.py

示例12: f1_score_taskB

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import switch [as 别名]
def f1_score_taskB(y_true, y_pred):
    # convert probas to 0,1
    y_pred_ones = K.zeros_like(y_true)
    y_pred_ones[:, K.argmax(y_pred, axis=-1)] = 1

    # where y_ture=1 and y_pred=1 -> true positive
    y_true_pred = K.sum(y_true * y_pred_ones, axis=0)

    # for each class: how many where classified as said class
    pred_cnt = K.sum(y_pred_ones, axis=0)

    # for each class: how many are true members of said class
    gold_cnt = K.sum(y_true, axis=0)

    # precision for each class
    precision = K.switch(K.equal(pred_cnt, 0), 0, y_true_pred / pred_cnt)

    # recall for each class
    recall = K.switch(K.equal(gold_cnt, 0), 0, y_true_pred / gold_cnt)

    # f1 for each class
    f1_class = K.switch(K.equal(precision + recall, 0), 0, 2 * (precision * recall) / (precision + recall))

    # return average f1 score over all classes
    return f1_class 
开发者ID:spinningbytes,项目名称:deep-mlsa,代码行数:27,代码来源:evaluation_metrics_tf.py

示例13: precision_keras

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import switch [as 别名]
def precision_keras(y_true, y_pred):
    # convert probas to 0,1
    y_pred_ones = K.zeros_like(y_true)
    y_pred_ones[:, K.argmax(y_pred, axis=-1)] = 1

    # where y_ture=1 and y_pred=1 -> true positive
    y_true_pred = K.sum(y_true * y_pred_ones, axis=0)

    # for each class: how many where classified as said class
    pred_cnt = K.sum(y_pred_ones, axis=0)

    # precision for each class
    precision = K.switch(K.equal(pred_cnt, 0), 0, y_true_pred / pred_cnt)

    # return average f1 score over all classes
    return K.mean(precision) 
开发者ID:spinningbytes,项目名称:deep-mlsa,代码行数:18,代码来源:evaluation_metrics_tf.py

示例14: rpn_class_loss_graph

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import switch [as 别名]
def rpn_class_loss_graph(rpn_match, rpn_class_logits):
    '''RPN anchor classifier loss.

    rpn_match: [batch, anchors, 1]. Anchor match type. 1=positive,
               -1=negative, 0=neutral anchor.
    rpn_class_logits: [batch, anchors, 2]. RPN classifier logits for FG/BG.
    '''
    # Squeeze last dim to simplify
    rpn_match = tf.squeeze(rpn_match, -1)
    # Get anchor classes. Convert the -1/+1 match to 0/1 values.
    anchor_class = K.cast(K.equal(rpn_match, 1), tf.int32)
    # Positive and Negative anchors contribute to the loss,
    # but neutral anchors (match value = 0) don't.
    indices = tf.where(K.not_equal(rpn_match, 0))
    # Pick rows that contribute to the loss and filter out the rest.
    rpn_class_logits = tf.gather_nd(rpn_class_logits, indices)
    anchor_class = tf.gather_nd(anchor_class, indices)
    # Cross entropy loss
    loss = K.sparse_categorical_crossentropy(target=anchor_class,
                                             output=rpn_class_logits,
                                             from_logits=True)
    loss = K.switch(tf.size(loss) > 0, K.mean(loss), tf.constant(0.0))
    return loss 
开发者ID:nearthlab,项目名称:image-segmentation,代码行数:25,代码来源:losses.py

示例15: offsets_loss

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import switch [as 别名]
def offsets_loss(gt_offsets, pred_offsets, dump=False):
    """オフセット回帰の損失関数
    positive(gt_fg > 0)データのみ評価対象とする

    Args:
        gt_offsets: 正解オフセット
            [R, 4]
            3軸目は領域提案とアンカーのオフセット(中心、幅、高さ)。
                (tx, ty, th, tw)
        pred_offsets: 予測値
            [R, 4].

    Note:
        この関数の呼び出し元はrpn_offsets_lossとhead_offsets_loss。
        RPNでのRoI予測が外れると全てNegativeなBBoxとなり、結果的にhead_offsets_lossへ渡される正解データのラベルが全てNegativeとなる。
        その場合、head_offsets_lossで得られる損失は0となるが、rpn_offsets_lossで得られる損失は大きくなるはずなので、
        損失全体(rpn_offsets_loss + head_offsets_loss)で評価すれば適切な損失になるはず。
    """
    loss = K.switch(tf.size(gt_offsets) > 0,
                    smooth_l1(gt_offsets, pred_offsets), tf.constant(0.0))
    loss = K.mean(loss)
    return loss 
开发者ID:shtamura,项目名称:maskrcnn,代码行数:24,代码来源:loss.py


注:本文中的keras.backend.switch方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。