当前位置: 首页>>代码示例>>Python>>正文


Python backend.sum方法代码示例

本文整理汇总了Python中keras.backend.sum方法的典型用法代码示例。如果您正苦于以下问题:Python backend.sum方法的具体用法?Python backend.sum怎么用?Python backend.sum使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在keras.backend的用法示例。


在下文中一共展示了backend.sum方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: step

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import sum [as 别名]
def step(self, x, states):   
        h = states[0]
        # states[1] necessary?

        # equals K.dot(X, self._W1) + self._b2 with X.shape=[bs, T, input_dim]
        total_x_prod = states[-1]
        # comes from the constants (equals the input sequence)
        X = states[-2]
        
        # expand dims to add the vector which is only valid for this time step
        # to total_x_prod which is valid for all time steps
        hw = K.expand_dims(K.dot(h, self._W2), 1)
        additive_atn = total_x_prod + hw
        attention = K.softmax(K.dot(additive_atn, self._V), axis=1)
        x_weighted = K.sum(attention * X, [1])

        x = K.dot(K.concatenate([x, x_weighted], 1), self._W3) + self._b3
        
        h, new_states = self.layer.cell.call(x, states[:-2])
        
        return h, new_states 
开发者ID:zimmerrol,项目名称:keras-utility-layer-collection,代码行数:23,代码来源:attention.py

示例2: call

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import sum [as 别名]
def call(self, x, mask=None):
        # computes a probability distribution over the timesteps
        # uses 'max trick' for numerical stability
        # reshape is done to avoid issue with Tensorflow
        # and 1-dimensional weights
        logits = K.dot(x, self.W)
        x_shape = K.shape(x)
        logits = K.reshape(logits, (x_shape[0], x_shape[1]))
        ai = K.exp(logits - K.max(logits, axis=-1, keepdims=True))

        # masked timesteps have zero weight
        if mask is not None:
            mask = K.cast(mask, K.floatx())
            ai = ai * mask
        att_weights = ai / (K.sum(ai, axis=1, keepdims=True) + K.epsilon())
        weighted_input = x * K.expand_dims(att_weights)
        result = K.sum(weighted_input, axis=1)
        if self.return_attention:
            return [result, att_weights]
        return result 
开发者ID:minerva-ml,项目名称:steppy-toolkit,代码行数:22,代码来源:contrib.py

示例3: build_generator

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import sum [as 别名]
def build_generator():
    """Builds the big generator model."""

    latent = keras.layers.Input((100,), name='latent')

    image_class = keras.layers.Input((10,), dtype='float32',
                                     name='image_class')
    d = keras.layers.Dense(100)(image_class)
    merged = keras.layers.merge([latent, d], mode='sum')

    hidden = keras.layers.Dense(512)(merged)
    hidden = keras.layers.LeakyReLU()(hidden)

    hidden = keras.layers.Dense(512)(hidden)
    hidden = keras.layers.LeakyReLU()(hidden)

    output_layer = keras.layers.Dense(28 * 28,
        activation='tanh')(hidden)
    fake_image = keras.layers.Reshape((28, 28, 1))(output_layer)

    return keras.models.Model(input=[latent, image_class],
                              output=fake_image) 
开发者ID:codekansas,项目名称:gandlf,代码行数:24,代码来源:reversing_gan.py

示例4: reverse_generator

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import sum [as 别名]
def reverse_generator(generator, X_sample, y_sample, title):
    """Gradient descent to map images back to their latent vectors."""

    latent_vec = np.random.normal(size=(1, 100))

    # Function for figuring out how to bump the input.
    target = K.placeholder()
    loss = K.sum(K.square(generator.outputs[0] - target))
    grad = K.gradients(loss, generator.inputs[0])[0]
    update_fn = K.function(generator.inputs + [target], [grad])

    # Repeatedly apply the update rule.
    xs = []
    for i in range(60):
        print('%d: latent_vec mean=%f, std=%f'
              % (i, np.mean(latent_vec), np.std(latent_vec)))
        xs.append(generator.predict_on_batch([latent_vec, y_sample]))
        for _ in range(10):
            update_vec = update_fn([latent_vec, y_sample, X_sample])[0]
            latent_vec -= update_vec * update_rate

    # Plots the samples.
    xs = np.concatenate(xs, axis=0)
    plot_as_gif(xs, X_sample, title) 
开发者ID:codekansas,项目名称:gandlf,代码行数:26,代码来源:reversing_gan.py

示例5: gradient_penalty_loss

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import sum [as 别名]
def gradient_penalty_loss(self, y_true, y_pred, averaged_samples):
        """
        Computes gradient penalty based on prediction and weighted real / fake samples
        """
        gradients = K.gradients(y_pred, averaged_samples)[0]
        # compute the euclidean norm by squaring ...
        gradients_sqr = K.square(gradients)
        #   ... summing over the rows ...
        gradients_sqr_sum = K.sum(gradients_sqr,
                                  axis=np.arange(1, len(gradients_sqr.shape)))
        #   ... and sqrt
        gradient_l2_norm = K.sqrt(gradients_sqr_sum)
        # compute lambda * (1 - ||grad||)^2 still for each single sample
        gradient_penalty = K.square(1 - gradient_l2_norm)
        # return the mean as loss over all the batch samples
        return K.mean(gradient_penalty) 
开发者ID:eriklindernoren,项目名称:Keras-GAN,代码行数:18,代码来源:wgan_gp.py

示例6: rpn_loss_regr

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import sum [as 别名]
def rpn_loss_regr(num_anchors):
	def rpn_loss_regr_fixed_num(y_true, y_pred):
		if K.image_dim_ordering() == 'th':
			x = y_true[:, 4 * num_anchors:, :, :] - y_pred
			x_abs = K.abs(x)
			x_bool = K.less_equal(x_abs, 1.0)
			return lambda_rpn_regr * K.sum(
				y_true[:, :4 * num_anchors, :, :] * (x_bool * (0.5 * x * x) + (1 - x_bool) * (x_abs - 0.5))) / K.sum(epsilon + y_true[:, :4 * num_anchors, :, :])
		else:
			x = y_true[:, :, :, 4 * num_anchors:] - y_pred
			x_abs = K.abs(x)
			x_bool = K.cast(K.less_equal(x_abs, 1.0), tf.float32)

			return lambda_rpn_regr * K.sum(
				y_true[:, :, :, :4 * num_anchors] * (x_bool * (0.5 * x * x) + (1 - x_bool) * (x_abs - 0.5))) / K.sum(epsilon + y_true[:, :, :, :4 * num_anchors])

	return rpn_loss_regr_fixed_num 
开发者ID:akshaylamba,项目名称:FasterRCNN_KERAS,代码行数:19,代码来源:losses.py

示例7: audio_discriminate_loss2

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import sum [as 别名]
def audio_discriminate_loss2(gamma=0.1,beta = 2*0.1,num_speaker=2):
    def loss_func(S_true,S_pred,gamma=gamma,beta=beta,num_speaker=num_speaker):
        sum_mtr = K.zeros_like(S_true[:,:,:,:,0])
        for i in range(num_speaker):
            sum_mtr += K.square(S_true[:,:,:,:,i]-S_pred[:,:,:,:,i])
            for j in range(num_speaker):
                if i != j:
                    sum_mtr -= gamma*(K.square(S_true[:,:,:,:,i]-S_pred[:,:,:,:,j]))

        for i in range(num_speaker):
            for j in range(i+1,num_speaker):
                #sum_mtr -= beta*K.square(S_pred[:,:,:,i]-S_pred[:,:,:,j])
                #sum_mtr += beta*K.square(S_true[:,:,:,:,i]-S_true[:,:,:,:,j])
                pass
        #sum = K.sum(K.maximum(K.flatten(sum_mtr),0))

        loss = K.mean(K.flatten(sum_mtr))

        return loss
    return loss_func 
开发者ID:bill9800,项目名称:speech_separation,代码行数:22,代码来源:model_loss.py

示例8: gen_adv_loss

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import sum [as 别名]
def gen_adv_loss(logits, y, loss='logloss', mean=False):
    """
    Generate the loss function.
    """

    if loss == 'training':
        # use the model's output instead of the true labels to avoid
        # label leaking at training time
        y = K.cast(K.equal(logits, K.max(logits, 1, keepdims=True)), "float32")
        y = y / K.sum(y, 1, keepdims=True)
        out = K.categorical_crossentropy(y, logits, from_logits=True)
    elif loss == 'logloss':
        out = K.categorical_crossentropy(y, logits, from_logits=True)
    else:
        raise ValueError("Unknown loss: {}".format(loss))

    if mean:
        out = K.mean(out)
    # else:
    #     out = K.sum(out)
    return out 
开发者ID:sunblaze-ucb,项目名称:blackbox-attacks,代码行数:23,代码来源:attack_utils.py

示例9: gen_adv_loss

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import sum [as 别名]
def gen_adv_loss(logits, y, loss='logloss', mean=False):
    """
    Generate the loss function.
    """

    if loss == 'training':
        # use the model's output instead of the true labels to avoid
        # label leaking at training time
        y = K.cast(K.equal(logits, K.max(logits, 1, keepdims=True)), "float32")
        y = y / K.sum(y, 1, keepdims=True)
        out = K.categorical_crossentropy(logits, y, from_logits=True)
    elif loss == 'logloss':
        # out = K.categorical_crossentropy(logits, y, from_logits=True)
        out = tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=y)
        out = tf.reduce_mean(out)
    else:
        raise ValueError("Unknown loss: {}".format(loss))

    if mean:
        out = tf.mean(out)
    # else:
    #     out = K.sum(out)
    return out 
开发者ID:sunblaze-ucb,项目名称:blackbox-attacks,代码行数:25,代码来源:attack_utils.py

示例10: optimizer

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import sum [as 别名]
def optimizer(self):
        a = K.placeholder(shape=(None,), dtype='int32')
        y = K.placeholder(shape=(None,), dtype='float32')

        prediction = self.model.output

        a_one_hot = K.one_hot(a, self.action_size)
        q_value = K.sum(prediction * a_one_hot, axis=1)
        error = K.abs(y - q_value)

        quadratic_part = K.clip(error, 0.0, 1.0)
        linear_part = error - quadratic_part
        loss = K.mean(0.5 * K.square(quadratic_part) + linear_part)

        optimizer = RMSprop(lr=0.00025, epsilon=0.01)
        updates = optimizer.get_updates(self.model.trainable_weights, [], loss)
        train = K.function([self.model.input, a, y], [loss], updates=updates)

        return train

    # 상태가 입력, 큐함수가 출력인 인공신경망 생성 
开发者ID:rlcode,项目名称:reinforcement-learning-kr,代码行数:23,代码来源:breakout_dqn.py

示例11: actor_optimizer

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import sum [as 别名]
def actor_optimizer(self):
        action = K.placeholder(shape=[None, self.action_size])
        advantages = K.placeholder(shape=[None, ])

        policy = self.actor.output

        # 정책 크로스 엔트로피 오류함수
        action_prob = K.sum(action * policy, axis=1)
        cross_entropy = K.log(action_prob + 1e-10) * advantages
        cross_entropy = -K.sum(cross_entropy)

        # 탐색을 지속적으로 하기 위한 엔트로피 오류
        entropy = K.sum(policy * K.log(policy + 1e-10), axis=1)
        entropy = K.sum(entropy)

        # 두 오류함수를 더해 최종 오류함수를 만듬
        loss = cross_entropy + 0.01 * entropy

        optimizer = RMSprop(lr=self.actor_lr, rho=0.99, epsilon=0.01)
        updates = optimizer.get_updates(self.actor.trainable_weights, [],loss)
        train = K.function([self.actor.input, action, advantages],
                           [loss], updates=updates)
        return train

    # 가치신경망을 업데이트하는 함수 
开发者ID:rlcode,项目名称:reinforcement-learning-kr,代码行数:27,代码来源:breakout_a3c.py

示例12: optimizer

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import sum [as 别名]
def optimizer(self):
        action = K.placeholder(shape=[None, 5])
        discounted_rewards = K.placeholder(shape=[None, ])
        
        # 크로스 엔트로피 오류함수 계산
        action_prob = K.sum(action * self.model.output, axis=1)
        cross_entropy = K.log(action_prob) * discounted_rewards
        loss = -K.sum(cross_entropy)
        
        # 정책신경망을 업데이트하는 훈련함수 생성
        optimizer = Adam(lr=self.learning_rate)
        updates = optimizer.get_updates(self.model.trainable_weights,[],
                                        loss)
        train = K.function([self.model.input, action, discounted_rewards], [],
                           updates=updates)

        return train

    # 정책신경망으로 행동 선택 
开发者ID:rlcode,项目名称:reinforcement-learning-kr,代码行数:21,代码来源:reinforce_agent.py

示例13: optimizer

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import sum [as 别名]
def optimizer(self):
        a = K.placeholder(shape=(None, ), dtype='int32')
        y = K.placeholder(shape=(None, ), dtype='float32')

        py_x = self.model.output

        a_one_hot = K.one_hot(a, self.action_size)
        q_value = K.sum(py_x * a_one_hot, axis=1)
        error = K.abs(y - q_value)

        quadratic_part = K.clip(error, 0.0, 1.0)
        linear_part = error - quadratic_part
        loss = K.mean(0.5 * K.square(quadratic_part) + linear_part)

        optimizer = RMSprop(lr=0.00025, epsilon=0.01)
        updates = optimizer.get_updates(self.model.trainable_weights, [], loss)
        train = K.function([self.model.input, a, y], [loss], updates=updates)

        return train

    # approximate Q function using Convolution Neural Network
    # state is input and Q Value of each action is output of network 
开发者ID:rlcode,项目名称:reinforcement-learning,代码行数:24,代码来源:breakout_ddqn.py

示例14: optimizer

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import sum [as 别名]
def optimizer(self):
        a = K.placeholder(shape=(None,), dtype='int32')
        y = K.placeholder(shape=(None,), dtype='float32')

        py_x = self.model.output

        a_one_hot = K.one_hot(a, self.action_size)
        q_value = K.sum(py_x * a_one_hot, axis=1)
        error = K.abs(y - q_value)

        quadratic_part = K.clip(error, 0.0, 1.0)
        linear_part = error - quadratic_part
        loss = K.mean(0.5 * K.square(quadratic_part) + linear_part)

        optimizer = RMSprop(lr=0.00025, epsilon=0.01)
        updates = optimizer.get_updates(self.model.trainable_weights, [], loss)
        train = K.function([self.model.input, a, y], [loss], updates=updates)

        return train

    # approximate Q function using Convolution Neural Network
    # state is input and Q Value of each action is output of network 
开发者ID:rlcode,项目名称:reinforcement-learning,代码行数:24,代码来源:breakout_dqn.py

示例15: actor_optimizer

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import sum [as 别名]
def actor_optimizer(self):
        action = K.placeholder(shape=[None, self.action_size])
        advantages = K.placeholder(shape=[None, ])

        policy = self.actor.output

        good_prob = K.sum(action * policy, axis=1)
        eligibility = K.log(good_prob + 1e-10) * advantages
        actor_loss = -K.sum(eligibility)

        entropy = K.sum(policy * K.log(policy + 1e-10), axis=1)
        entropy = K.sum(entropy)

        loss = actor_loss + 0.01*entropy
        optimizer = RMSprop(lr=self.actor_lr, rho=0.99, epsilon=0.01)
        updates = optimizer.get_updates(self.actor.trainable_weights, [], loss)
        train = K.function([self.actor.input, action, advantages], [loss], updates=updates)

        return train

    # make loss function for Value approximation 
开发者ID:rlcode,项目名称:reinforcement-learning,代码行数:23,代码来源:breakout_a3c.py


注:本文中的keras.backend.sum方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。