当前位置: 首页>>代码示例>>Python>>正文


Python backend.std方法代码示例

本文整理汇总了Python中keras.backend.std方法的典型用法代码示例。如果您正苦于以下问题:Python backend.std方法的具体用法?Python backend.std怎么用?Python backend.std使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在keras.backend的用法示例。


在下文中一共展示了backend.std方法的14个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: call

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import std [as 别名]
def call(self, x):
        mean = K.mean(x, axis=-1)
        std = K.std(x, axis=-1)

        if len(x.shape) == 3:
            mean = K.permute_dimensions(
                K.repeat(mean, x.shape.as_list()[-1]),
                [0,2,1]
            )
            std = K.permute_dimensions(
                K.repeat(std, x.shape.as_list()[-1]),
                [0,2,1] 
            )
            
        elif len(x.shape) == 2:
            mean = K.reshape(
                K.repeat_elements(mean, x.shape.as_list()[-1], 0),
                (-1, x.shape.as_list()[-1])
            )
            std = K.reshape(
                K.repeat_elements(mean, x.shape.as_list()[-1], 0),
                (-1, x.shape.as_list()[-1])
            )
        
        return self._g * (x - mean) / (std + self._epsilon) + self._b 
开发者ID:zimmerrol,项目名称:keras-utility-layer-collection,代码行数:27,代码来源:layer_normalization.py

示例2: call

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import std [as 别名]
def call(self, inputs, training=None):
        input_shape = K.int_shape(inputs)
        reduction_axes = list(range(0, len(input_shape)))

        if (self.axis is not None):
            del reduction_axes[self.axis]

        del reduction_axes[0]

        mean = K.mean(inputs, reduction_axes, keepdims=True)
        stddev = K.std(inputs, reduction_axes, keepdims=True) + self.epsilon
        normed = (inputs - mean) / stddev

        broadcast_shape = [1] * len(input_shape)
        if self.axis is not None:
            broadcast_shape[self.axis] = input_shape[self.axis]

        if self.scale:
            broadcast_gamma = K.reshape(self.gamma, broadcast_shape)
            normed = normed * broadcast_gamma
        if self.center:
            broadcast_beta = K.reshape(self.beta, broadcast_shape)
            normed = normed + broadcast_beta
        return normed 
开发者ID:emilwallner,项目名称:Coloring-greyscale-images,代码行数:26,代码来源:instance_normalization.py

示例3: call

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import std [as 别名]
def call(self, inputs, training=None):
        input_shape = K.int_shape(inputs)
        reduction_axes = list(range(0, len(input_shape)))

        if self.axis is not None:
            del reduction_axes[self.axis]

        del reduction_axes[0]

        mean = K.mean(inputs, reduction_axes, keepdims=True)
        stddev = K.std(inputs, reduction_axes, keepdims=True) + self.epsilon
        normed = (inputs - mean) / stddev

        broadcast_shape = [1] * len(input_shape)
        if self.axis is not None:
            broadcast_shape[self.axis] = input_shape[self.axis]

        if self.scale:
            broadcast_gamma = K.reshape(self.gamma, broadcast_shape)
            normed = normed * broadcast_gamma
        if self.center:
            broadcast_beta = K.reshape(self.beta, broadcast_shape)
            normed = normed + broadcast_beta
        return normed 
开发者ID:keras-team,项目名称:keras-contrib,代码行数:26,代码来源:instancenormalization.py

示例4: render_naive

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import std [as 别名]
def render_naive(layer_name, filter_index, img0=img_noise, iter_n=20, step=1.0):
    if layer_name not in layer_dict:
        print("ERROR: invalid layer name: %s" % layer_name)
        return

    layer = layer_dict[layer_name]

    print("{} < {}".format(filter_index, layer.output_shape[-1]))

    activation = K.mean(layer.output[:, :, :, filter_index])
    grads = K.gradients(activation, input_tensor)[0]

    # DropoutやBNを含むネットワークはK.learning_phase()が必要
    iterate = K.function([input_tensor, K.learning_phase()], [activation, grads])

    img = img0.copy()
    for i in range(iter_n):
        # 学習はしないので0を入力
        activation_value, grads_value = iterate([img, 0])
        grads_value /= K.std(grads_value) + 1e-8
        img += grads_value * step
        print(i, activation_value) 
开发者ID:aidiary,项目名称:keras-examples,代码行数:24,代码来源:dream1.py

示例5: nss

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import std [as 别名]
def nss(y_true, y_pred):
    max_y_pred = K.repeat_elements(K.expand_dims(K.repeat_elements(K.expand_dims(K.max(K.max(y_pred, axis=2), axis=2)), 
                                                                   shape_r_out, axis=-1)), shape_c_out, axis=-1)
    y_pred /= max_y_pred
    y_pred_flatten = K.batch_flatten(y_pred)

    y_mean = K.mean(y_pred_flatten, axis=-1)
    y_mean = K.repeat_elements(K.expand_dims(K.repeat_elements(K.expand_dims(K.expand_dims(y_mean)), 
                                                               shape_r_out, axis=-1)), shape_c_out, axis=-1)

    y_std = K.std(y_pred_flatten, axis=-1)
    y_std = K.repeat_elements(K.expand_dims(K.repeat_elements(K.expand_dims(K.expand_dims(y_std)), 
                                                              shape_r_out, axis=-1)), shape_c_out, axis=-1)

    y_pred = (y_pred - y_mean) / (y_std + K.epsilon())

    return -(K.sum(K.sum(y_true * y_pred, axis=2), axis=2) / K.sum(K.sum(y_true, axis=2), axis=2))


# Gaussian priors initialization 
开发者ID:marcellacornia,项目名称:sam,代码行数:22,代码来源:models.py

示例6: call

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import std [as 别名]
def call(self, inputs):
        """This is where the layer's logic lives.

        Parameters
        ----------
        inputs: tensor
            Input tensor, or list/tuple of input tensors
        kwargs: dict
            Additional keyword arguments

        Returns
        -------
        tensor
            A tensor or list/tuple of tensors
        """
        if self.data_format == 'channels_last':
            pooled = K.std(inputs, axis=[1, 2])
        else:
            pooled = K.std(inputs, axis=[2, 3])
        return pooled 
开发者ID:deepfakes,项目名称:faceswap,代码行数:22,代码来源:layers.py

示例7: call

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import std [as 别名]
def call(self, inputs, training=None):
        input_shape = K.int_shape(inputs[0])
        reduction_axes = list(range(0, len(input_shape)))
        
        beta = inputs[1]
        gamma = inputs[2]

        if self.axis is not None:
            del reduction_axes[self.axis]

        del reduction_axes[0]
        mean = K.mean(inputs[0], reduction_axes, keepdims=True)
        stddev = K.std(inputs[0], reduction_axes, keepdims=True) + self.epsilon
        normed = (inputs[0] - mean) / stddev

        return normed * gamma + beta 
开发者ID:manicman1999,项目名称:StyleGAN-Keras,代码行数:18,代码来源:AdaIN.py

示例8: ssim

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import std [as 别名]
def ssim(y_true, y_pred):
    """structural similarity measurement system."""
    ## K1, K2 are two constants, much smaller than 1
    K1 = 0.04
    K2 = 0.06
    
    ## mean, std, correlation
    mu_x = K.mean(y_pred)
    mu_y = K.mean(y_true)
    
    sig_x = K.std(y_pred)
    sig_y = K.std(y_true)
    sig_xy = (sig_x * sig_y) ** 0.5

    ## L, number of pixels, C1, C2, two constants
    L =  33
    C1 = (K1 * L) ** 2
    C2 = (K2 * L) ** 2

    ssim = (2 * mu_x * mu_y + C1) * (2 * sig_xy * C2) * 1.0 / ((mu_x ** 2 + mu_y ** 2 + C1) * (sig_x ** 2 + sig_y ** 2 + C2))
    return ssim 
开发者ID:qobilidop,项目名称:srcnn,代码行数:23,代码来源:metrics.py

示例9: nrmse_b

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import std [as 别名]
def nrmse_b(y_true, y_pred):
    " If this value is larger than 1, you 'd obtain a better model by simply generating a random time series " \
    "of the same mean and standard deviation as Y."
    return K.sqrt(K.mean(K.sum(K.square(y_true - y_pred)))) / K.std(K.identity(y_true)) 
开发者ID:albertogaspar,项目名称:dts,代码行数:6,代码来源:losses.py

示例10: mvn

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import std [as 别名]
def mvn(tensor):
    """Per row mean-variance normalization."""
    epsilon = 1e-6
    mean = K.mean(tensor, axis=1, keepdims=True)
    std = K.std(tensor, axis=1, keepdims=True)
    mvn = (tensor - mean) / (std + epsilon)
    return mvn 
开发者ID:vuptran,项目名称:graph-representation-learning,代码行数:9,代码来源:ae.py

示例11: gmsd_loss

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import std [as 别名]
def gmsd_loss(y_true, y_pred):
    """ Gradient Magnitude Similarity Deviation Loss.

    Improved image quality metric over MS-SSIM with easier calculations

    Parameters
    ----------
    y_true: tensor or variable
        The ground truth value
    y_pred: tensor or variable
        The predicted value

    Returns
    -------
    tensor
        The loss value

    References
    ----------
    http://www4.comp.polyu.edu.hk/~cslzhang/IQA/GMSD/GMSD.htm
    https://arxiv.org/ftp/arxiv/papers/1308/1308.3052.pdf

    """
    true_edge = scharr_edges(y_true, True)
    pred_edge = scharr_edges(y_pred, True)
    ephsilon = 0.0025
    upper = 2.0 * true_edge * pred_edge
    lower = K.square(true_edge) + K.square(pred_edge)
    gms = (upper + ephsilon) / (lower + ephsilon)
    gmsd = K.std(gms, axis=(1, 2, 3), keepdims=True)
    gmsd = K.squeeze(gmsd, axis=-1)
    return gmsd


# Gaussian Blur is here as it is only used for losses.
# It was previously kept in lib/model/masks but the import of keras backend
# breaks plaidml 
开发者ID:deepfakes,项目名称:faceswap,代码行数:39,代码来源:losses.py

示例12: call

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import std [as 别名]
def call(self, inputs, training=None):  # pylint:disable=arguments-differ,unused-argument
        """This is where the layer's logic lives.

        Parameters
        ----------
        inputs: tensor
            Input tensor, or list/tuple of input tensors

        Returns
        -------
        tensor
            A tensor or list/tuple of tensors
        """
        input_shape = K.int_shape(inputs)
        reduction_axes = list(range(0, len(input_shape)))

        if self.axis is not None:
            del reduction_axes[self.axis]

        del reduction_axes[0]

        mean = K.mean(inputs, reduction_axes, keepdims=True)
        stddev = K.std(inputs, reduction_axes, keepdims=True) + self.epsilon
        normed = (inputs - mean) / stddev

        broadcast_shape = [1] * len(input_shape)
        if self.axis is not None:
            broadcast_shape[self.axis] = input_shape[self.axis]

        if self.scale:
            broadcast_gamma = K.reshape(self.gamma, broadcast_shape)
            normed = normed * broadcast_gamma
        if self.center:
            broadcast_beta = K.reshape(self.beta, broadcast_shape)
            normed = normed + broadcast_beta
        return normed 
开发者ID:deepfakes,项目名称:faceswap,代码行数:38,代码来源:normalization.py

示例13: call

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import std [as 别名]
def call(self, x):
        mean = K.mean(x, axis=-1, keepdims=True)
        std = K.std(x, axis=-1, keepdims=True)
        return self.gamma * (x - mean) / (std + self.eps) + self.beta 
开发者ID:zake7749,项目名称:CIKM-AnalytiCup-2018,代码行数:6,代码来源:layers.py

示例14: call

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import std [as 别名]
def call(self, x, **kwargs):
        mean = K.mean(x, axis=-1, keepdims=True)
        std = K.std(x, axis=-1, keepdims=True)
        return self.gamma * (x - mean) / (std + self.eps) + self.beta 
开发者ID:GlassyWing,项目名称:transformer-keras,代码行数:6,代码来源:core.py


注:本文中的keras.backend.std方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。