当前位置: 首页>>代码示例>>Python>>正文


Python backend.sqrt方法代码示例

本文整理汇总了Python中keras.backend.sqrt方法的典型用法代码示例。如果您正苦于以下问题:Python backend.sqrt方法的具体用法?Python backend.sqrt怎么用?Python backend.sqrt使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在keras.backend的用法示例。


在下文中一共展示了backend.sqrt方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: generate_pattern

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import sqrt [as 别名]
def generate_pattern(layer_name, filter_index, size=150):
    # 过滤器可视化函数
    layer_output = model.get_layer(layer_name).output
    loss = K.mean(layer_output[:, :, :, filter_index])
    grads = K.gradients(loss, model.input)[0]
    grads /= (K.sqrt(K.mean(K.square(grads))) + 1e-5)
    iterate = K.function([model.input], [loss, grads])
    input_img_data = np.random.random((1, size, size, 3)) * 20 + 128.
    
    step = 1
    for _ in range(40):
        loss_value, grads_value = iterate([input_img_data])
        input_img_data += grads_value * step
    
    img = input_img_data[0]
    return deprocess_image(img) 
开发者ID:wdxtub,项目名称:deep-learning-note,代码行数:18,代码来源:7_visualize_filters.py

示例2: gradient_penalty_loss

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import sqrt [as 别名]
def gradient_penalty_loss(self, y_true, y_pred, averaged_samples):
        """
        Computes gradient penalty based on prediction and weighted real / fake samples
        """
        gradients = K.gradients(y_pred, averaged_samples)[0]
        # compute the euclidean norm by squaring ...
        gradients_sqr = K.square(gradients)
        #   ... summing over the rows ...
        gradients_sqr_sum = K.sum(gradients_sqr,
                                  axis=np.arange(1, len(gradients_sqr.shape)))
        #   ... and sqrt
        gradient_l2_norm = K.sqrt(gradients_sqr_sum)
        # compute lambda * (1 - ||grad||)^2 still for each single sample
        gradient_penalty = K.square(1 - gradient_l2_norm)
        # return the mean as loss over all the batch samples
        return K.mean(gradient_penalty) 
开发者ID:eriklindernoren,项目名称:Keras-GAN,代码行数:18,代码来源:wgan_gp.py

示例3: smoothing

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import sqrt [as 别名]
def smoothing(im, mode = None):
    # utility function to smooth an image
    if mode is None:
        return im
    elif mode == 'L2':
        # L2 norm
        return im / (np.sqrt(np.mean(np.square(im))) + K.epsilon())
    elif mode == 'GaussianBlur':
        # Gaussian Blurring with width of 3
        return filters.gaussian_filter(im,1/8)
    elif mode == 'Decay':
        # Decay regularization
        decay = 0.98
        return decay * im
    elif mode == 'Clip_weak':
        # Clip weak pixel regularization
        percentile = 1
        threshold = np.percentile(np.abs(im),percentile)
        im[np.where(np.abs(im) < threshold)] = 0
        return im
    else:
        # print error message
        print('Unknown smoothing parameter. No smoothing implemented.')
        return im 
开发者ID:crild,项目名称:facies_net,代码行数:26,代码来源:feature_vis.py

示例4: get_weightnorm_params_and_grads

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import sqrt [as 别名]
def get_weightnorm_params_and_grads(p, g):
    ps = K.get_variable_shape(p)

    # construct weight scaler: V_scaler = g/||V||
    V_scaler_shape = (ps[-1],)  # assumes we're using tensorflow!
    V_scaler = K.ones(V_scaler_shape)  # init to ones, so effective parameters don't change

    # get V parameters = ||V||/g * W
    norm_axes = [i for i in range(len(ps) - 1)]
    V = p / tf.reshape(V_scaler, [1] * len(norm_axes) + [-1])

    # split V_scaler into ||V|| and g parameters
    V_norm = tf.sqrt(tf.reduce_sum(tf.square(V), norm_axes))
    g_param = V_scaler * V_norm

    # get grad in V,g parameters
    grad_g = tf.reduce_sum(g * V, norm_axes) / V_norm
    grad_V = tf.reshape(V_scaler, [1] * len(norm_axes) + [-1]) * \
             (g - tf.reshape(grad_g / V_norm, [1] * len(norm_axes) + [-1]) * V)

    return V, V_norm, V_scaler, g_param, grad_g, grad_V 
开发者ID:openai,项目名称:weightnorm,代码行数:23,代码来源:weightnorm.py

示例5: call

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import sqrt [as 别名]
def call(self, inputs, **kwargs):
        if type(inputs) is list:  # true label is provided with shape = [None, n_classes], i.e. one-hot code.
            assert len(inputs) == 2
            inputs, mask = inputs
        else:  # if no true label, mask by the max length of capsules. Mainly used for prediction
            # compute lengths of capsules
            x = K.sqrt(K.sum(K.square(inputs), -1))
            # generate the mask which is a one-hot code.
            # mask.shape=[None, n_classes]=[None, num_capsule]
            mask = K.one_hot(indices=K.argmax(x, 1), num_classes=x.get_shape().as_list()[1])

        # inputs.shape=[None, num_capsule, dim_capsule]
        # mask.shape=[None, num_capsule]
        # masked.shape=[None, num_capsule * dim_capsule]
        masked = K.batch_flatten(inputs * K.expand_dims(mask, -1))
        return masked 
开发者ID:ssrp,项目名称:Multi-level-DCNet,代码行数:18,代码来源:capsulelayers.py

示例6: get_updates

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import sqrt [as 别名]
def get_updates(self, loss, params):
        grads = self.get_gradients(loss, params)
        self.updates = [K.update_add(self.iterations, 1)]

        t = K.cast(self.iterations, K.floatx()) + 1
        lr_t = self.learning_rate * (K.sqrt(1. - K.pow(self.beta_2, t)) / (1. - K.pow(self.beta_1, t)))

        ms = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params]
        vs = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params]
        self.weights = [self.iterations] + ms + vs

        for p, g, m, v in zip(params, grads, ms, vs):
            m_t = (self.beta_1 * m) + (1. - self.beta_1) * g
            v_t = (self.beta_2 * v) + (1. - self.beta_2) * K.square(g)
            p_t = lr_t * m_t / (K.sqrt(v_t) + self.epsilon)
            self.updates.append(K.update(m, m_t))
            self.updates.append(K.update(v, v_t))
            self.updates.append(K.update_sub(p, p_t))
        return self.updates 
开发者ID:CyberZHG,项目名称:keras-lookahead,代码行数:21,代码来源:optimizers.py

示例7: loss

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import sqrt [as 别名]
def loss(self, y_true, y_pred):

        # get the value for the true and fake images
        disc_true = self.disc(y_true)
        disc_pred = self.disc(y_pred)

        # sample a x_hat by sampling along the line between true and pred
        # z = tf.placeholder(tf.float32, shape=[None, 1])
        # shp = y_true.get_shape()[0]
        # WARNING: SHOULD REALLY BE shape=[batch_size, 1] !!!
        # self.batch_size does not work, since it's not None!!!
        alpha = K.random_uniform(shape=[K.shape(y_pred)[0], 1, 1, 1])
        diff = y_pred - y_true
        interp = y_true + alpha * diff

        # take gradient of D(x_hat)
        gradients = K.gradients(self.disc(interp), [interp])[0]
        grad_pen = K.mean(K.square(K.sqrt(K.sum(K.square(gradients), axis=1))-1))

        # compute loss
        return (K.mean(disc_pred) - K.mean(disc_true)) + self.lambda_gp * grad_pen 
开发者ID:voxelmorph,项目名称:voxelmorph,代码行数:23,代码来源:metrics.py

示例8: fgsm

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import sqrt [as 别名]
def fgsm(model, inp, pad_idx, pad_len, e, step_size=0.001):
    adv = inp.copy()
    loss = K.mean(model.output[:, 0])
    grads = K.gradients(loss, model.layers[1].output)[0]
    grads /= (K.sqrt(K.mean(K.square(grads))) + 1e-8)
    
    mask = np.zeros(model.layers[1].output.shape[1:]) # embedding layer output shape
    mask[pad_idx:pad_idx+pad_len] = 1
    grads *= K.constant(mask)
    
    iterate = K.function([model.layers[1].output], [loss, grads])
    g = 0.
    step = int(1/step_size)*10
    for _ in range(step):
        loss_value, grads_value = iterate([adv])
        grads_value *= step_size
        g += grads_value
        adv += grads_value
        #print (e, loss_value, end='\r')
        if loss_value >= 0.9:
            break
    
    return adv, g, loss_value 
开发者ID:j40903272,项目名称:MalConv-keras,代码行数:25,代码来源:gen_adversarial.py

示例9: fgsm

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import sqrt [as 别名]
def fgsm(model, inp, pad_idx, pad_len, e, step_size=0.001, target_class=1):
    adv = inp.copy()
    loss = K.mean(model.output[:, target_class])
    grads = K.gradients(loss, model.layers[1].output)[0]
    grads /= (K.sqrt(K.mean(K.square(grads))) + 1e-8)
    
    mask = np.zeros(model.layers[1].output.shape[1:]) # embedding layer output shape
    mask[pad_idx:pad_idx+pad_len] = 1
    grads *= K.constant(mask)
    
    iterate = K.function([model.layers[1].output], [loss, grads])
    g = 0.
    step = int(1/step_size)*10
    for _ in range(step):
        loss_value, grads_value = iterate([adv])
        grads_value *= step_size
        g += grads_value
        adv += grads_value
        #print (e, loss_value, grads_value.mean(), end='\r')
        if loss_value >= 0.9:
            break
    
    return adv, g, loss_value 
开发者ID:j40903272,项目名称:MalConv-keras,代码行数:25,代码来源:gen_adversarial2.py

示例10: norm

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import sqrt [as 别名]
def norm(self, xs, norm_id):
    mu = K.mean(xs, axis=-1, keepdims=True)
    sigma = K.sqrt(K.var(xs, axis=-1, keepdims=True) + 1e-3)
    xs = self.gs[norm_id] * (xs - mu) / (sigma + 1e-3) + self.bs[norm_id]
    return xs 
开发者ID:LaurentMazare,项目名称:deep-models,代码行数:7,代码来源:lstm_ln.py

示例11: squash

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import sqrt [as 别名]
def squash(s, axis=-1):
    """
    Squash function. This could be viewed as one kind of activations.
    """
    squared_s = K.sum(K.square(s), axis=axis, keepdims=True)
    scale = squared_s / (1 + squared_s) / K.sqrt(squared_s + K.epsilon())
    return scale * s 
开发者ID:l11x0m7,项目名称:CapsNet,代码行数:9,代码来源:capsule.py

示例12: call

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import sqrt [as 别名]
def call(self, inputs, **kwargs):
        return K.sqrt(K.sum(K.square(inputs), axis=-1)) 
开发者ID:l11x0m7,项目名称:CapsNet,代码行数:4,代码来源:capsule.py

示例13: std_rmse

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import sqrt [as 别名]
def std_rmse(std=1):
    def rmse(y_true, y_pred):
        return K.sqrt(K.mean(K.square((y_pred - y_true)))) * std

    return rmse 
开发者ID:blackmints,项目名称:3DGCN,代码行数:7,代码来源:loss.py

示例14: __call__

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import sqrt [as 别名]
def __call__(self, p):
        if self.skip:
            return self.s * (p / K.clip(K.sqrt(K.sum(K.square(p), axis=-1, keepdims=True)), 0.5, 100))
        return self.s * (p / K.sqrt(K.sum(K.square(p), axis=-1, keepdims=True))) 
开发者ID:textclf,项目名称:fancy-cnn,代码行数:6,代码来源:embeddings.py

示例15: cor

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import sqrt [as 别名]
def cor(self,y1, y2, lamda):
        y1_mean = K.mean(y1, axis=0)
        y1_centered = y1 - y1_mean
        y2_mean = K.mean(y2, axis=0)
        y2_centered = y2 - y2_mean
        corr_nr = K.sum(y1_centered * y2_centered, axis=0)
        corr_dr1 = K.sqrt(T.sum(y1_centered * y1_centered, axis=0) + 1e-8)
        corr_dr2 = K.sqrt(T.sum(y2_centered * y2_centered, axis=0) + 1e-8)
        corr_dr = corr_dr1 * corr_dr2
        corr = corr_nr / corr_dr
        return K.sum(corr) * lamda 
开发者ID:GauravBh1010tt,项目名称:DeepLearn,代码行数:13,代码来源:DeepLearn_cornet.py


注:本文中的keras.backend.sqrt方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。