本文整理汇总了Python中keras.backend.reverse方法的典型用法代码示例。如果您正苦于以下问题:Python backend.reverse方法的具体用法?Python backend.reverse怎么用?Python backend.reverse使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类keras.backend
的用法示例。
在下文中一共展示了backend.reverse方法的13个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _backward
# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import reverse [as 别名]
def _backward(gamma, mask):
'''Backward recurrence of the linear chain crf.'''
gamma = K.cast(gamma, 'int32')
def _backward_step(gamma_t, states):
y_tm1 = K.squeeze(states[0], 0)
y_t = batch_gather(gamma_t, y_tm1)
return y_t, [K.expand_dims(y_t, 0)]
initial_states = [K.expand_dims(K.zeros_like(gamma[:, 0, 0]), 0)]
_, y_rev, _ = K.rnn(_backward_step,
gamma,
initial_states,
go_backwards=True)
y = K.reverse(y_rev, 1)
if mask is not None:
mask = K.cast(mask, dtype='int32')
# mask output
y *= mask
# set masked values to -1
y += -(1 - mask)
return y
示例2: _backward
# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import reverse [as 别名]
def _backward(gamma, mask):
"""Backward recurrence of the linear chain crf."""
gamma = K.cast(gamma, 'int32')
def _backward_step(gamma_t, states):
y_tm1 = K.squeeze(states[0], 0)
y_t = batch_gather(gamma_t, y_tm1)
return y_t, [K.expand_dims(y_t, 0)]
initial_states = [K.expand_dims(K.zeros_like(gamma[:, 0, 0]), 0)]
_, y_rev, _ = K.rnn(_backward_step,
gamma,
initial_states,
go_backwards=True)
y = K.reverse(y_rev, 1)
if mask is not None:
mask = K.cast(mask, dtype='int32')
# mask output
y *= mask
# set masked values to -1
y += -(1 - mask)
return y
示例3: call
# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import reverse [as 别名]
def call(self, x):
shape = K.shape(x)
x = K.reverse(x, axes=1) # reverse, so that frameness is related to fixed point
frame_1 = tf.gather(x, K.arange(start=0, stop=shape[1], step=3), axis=1)
frame_2 = tf.gather(x, K.arange(start=1, stop=shape[1], step=3), axis=1)
frame_3 = tf.gather(x, K.arange(start=2, stop=shape[1], step=3), axis=1)
return [frame_1, frame_2, frame_3]
示例4: map_charades
# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import reverse [as 别名]
def map_charades(y_true, y_pred):
"""
Returns mAP
"""
m_aps = []
tf_one = tf.constant(1, dtype=tf.float32)
n_classes = y_pred.shape[1]
for oc_i in range(n_classes):
pred_row = y_pred[:, oc_i]
sorted_idxs = tf_framework.argsort(-pred_row)
true_row = y_true[:, oc_i]
true_row = tf.map_fn(lambda i: true_row[i], sorted_idxs, dtype=np.float32)
tp_poolean = tf.equal(true_row, tf_one)
tp = tf.cast(tp_poolean, dtype=np.float32)
fp = K.reverse(tp, axes=0)
n_pos = tf.reduce_sum(tp)
f_pcs = tf.cumsum(fp)
t_pcs = tf.cumsum(tp)
s = f_pcs + t_pcs
s = tf.cast(s, tf.float32)
t_pcs = tf.cast(t_pcs, tf.float32)
tp_float = tf.cast(tp_poolean, np.float32)
prec = t_pcs / s
avg_prec = prec * tp_float
n_pos = tf.cast(n_pos, tf.float32)
avg_prec = avg_prec / n_pos
avg_prec = tf.expand_dims(avg_prec, axis=0)
m_aps.append(avg_prec)
m_aps = K.concatenate(m_aps, axis=0)
mAP = K.mean(m_aps)
return mAP
# endregion
# region Callbacks
示例5: call
# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import reverse [as 别名]
def call(self, x,mask=None):
import theano.tensor as T
newx = T.sort(x)
#response = K.reverse(newx, axes=1)
#response = K.sum(x> 0.5, axis=1) / self.k
return newx
#response = K.reshape(newx,[-1,1])
#return K.concatenate([1-response, response], axis=self.label)
#response = K.reshape(x[:,self.axis], (-1,1))
#return K.concatenate([1-response, response], axis=self.axis)
#e = K.exp(x - K.max(x, axis=self.axis, keepdims=True))
#s = K.sum(e, axis=self.axis, keepdims=True)
#return e / s
示例6: ResNet50_pre
# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import reverse [as 别名]
def ResNet50_pre(imgs, scope):
return Lambda(lambda x: K.reverse(x, len(x.shape)-1) - [103.939,116.779,123.68], name=scope+'resnet50_pre')(imgs)
示例7: viterbi_decoding
# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import reverse [as 别名]
def viterbi_decoding(self, X, mask=None):
input_energy = self.activation(K.dot(X, self.kernel) + self.bias)
if self.use_boundary:
input_energy = self.add_boundary_energy(
input_energy, mask, self.left_boundary, self.right_boundary)
argmin_tables = self.recursion(input_energy, mask, return_logZ=False)
argmin_tables = K.cast(argmin_tables, 'int32')
# backward to find best path, `initial_best_idx` can be any,
# as all elements in the last argmin_table are the same
argmin_tables = K.reverse(argmin_tables, 1)
# matrix instead of vector is required by tf `K.rnn`
initial_best_idx = [K.expand_dims(argmin_tables[:, 0, 0])]
if K.backend() == 'theano':
initial_best_idx = [K.T.unbroadcast(initial_best_idx[0], 1)]
def gather_each_row(params, indices):
n = K.shape(indices)[0]
if K.backend() == 'theano':
return params[K.T.arange(n), indices]
else:
indices = K.transpose(K.stack([K.tf.range(n), indices]))
return K.tf.gather_nd(params, indices)
def find_path(argmin_table, best_idx):
next_best_idx = gather_each_row(argmin_table, best_idx[0][:, 0])
next_best_idx = K.expand_dims(next_best_idx)
if K.backend() == 'theano':
next_best_idx = K.T.unbroadcast(next_best_idx, 1)
return next_best_idx, [next_best_idx]
_, best_paths, _ = K.rnn(find_path, argmin_tables, initial_best_idx,
input_length=K.int_shape(X)[1], unroll=self.unroll)
best_paths = K.reverse(best_paths, 1)
best_paths = K.squeeze(best_paths, 2)
return K.one_hot(best_paths, self.units)
示例8: call
# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import reverse [as 别名]
def call(self, inputs, **kwargs):
y_rev = super().call(inputs, **kwargs)
return K.reverse(y_rev, 1)
示例9: viterbi_decoding
# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import reverse [as 别名]
def viterbi_decoding(self, X, mask=None):
input_energy = self.activation(K.dot(X, self.kernel) + self.bias)
if self.use_boundary:
input_energy = self.add_boundary_energy(input_energy, mask, self.left_boundary, self.right_boundary)
argmin_tables = self.recursion(input_energy, mask, return_logZ=False)
argmin_tables = K.cast(argmin_tables, 'int32')
# backward to find best path, `initial_best_idx` can be any, as all elements in the last argmin_table are the same
argmin_tables = K.reverse(argmin_tables, 1)
initial_best_idx = [K.expand_dims(argmin_tables[:, 0, 0])] # matrix instead of vector is required by tf `K.rnn`
if K.backend() == 'theano':
initial_best_idx = [K.T.unbroadcast(initial_best_idx[0], 1)]
def gather_each_row(params, indices):
n = K.shape(indices)[0]
if K.backend() == 'theano':
return params[K.T.arange(n), indices]
else:
indices = K.transpose(K.stack([K.tf.range(n), indices]))
return K.tf.gather_nd(params, indices)
def find_path(argmin_table, best_idx):
next_best_idx = gather_each_row(argmin_table, best_idx[0][:, 0])
next_best_idx = K.expand_dims(next_best_idx)
if K.backend() == 'theano':
next_best_idx = K.T.unbroadcast(next_best_idx, 1)
return next_best_idx, [next_best_idx]
_, best_paths, _ = K.rnn(find_path, argmin_tables, initial_best_idx, input_length=K.int_shape(X)[1], unroll=self.unroll)
best_paths = K.reverse(best_paths, 1)
best_paths = K.squeeze(best_paths, 2)
return K.one_hot(best_paths, self.units)
示例10: create_model
# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import reverse [as 别名]
def create_model(self, hyper_parameters):
"""
构建神经网络,行卷积加池化
:param hyper_parameters:json, hyper parameters of network
:return: tensor, moedl
"""
super().create_model(hyper_parameters)
embedding_output = self.word_embedding.output
# rnn layers
if self.rnn_units=="LSTM":
layer_cell = LSTM
else:
layer_cell = GRU
# 反向
x_backwords = layer_cell(units=self.rnn_units,
return_sequences=True,
kernel_regularizer=regularizers.l2(0.32 * 0.1),
recurrent_regularizer=regularizers.l2(0.32),
go_backwards = True)(embedding_output)
x_backwords_reverse = Lambda(lambda x: K.reverse(x, axes=1))(x_backwords)
# 前向
x_fordwords = layer_cell(units=self.rnn_units,
return_sequences=True,
kernel_regularizer=regularizers.l2(0.32 * 0.1),
recurrent_regularizer=regularizers.l2(0.32),
go_backwards = False)(embedding_output)
# 拼接
x_feb = Concatenate(axis=2)([x_fordwords, embedding_output, x_backwords_reverse])
####使用多个卷积核##################################################
x_feb = Dropout(self.dropout)(x_feb)
# Concatenate后的embedding_size
dim_2 = K.int_shape(x_feb)[2]
x_feb_reshape = Reshape((self.len_max, dim_2, 1))(x_feb)
# 提取n-gram特征和最大池化, 一般不用平均池化
conv_pools = []
for filter in self.filters:
conv = Conv2D(filters = self.filters_num,
kernel_size = (filter, dim_2),
padding = 'valid',
kernel_initializer = 'normal',
activation = 'relu',
)(x_feb_reshape)
pooled = MaxPooling2D(pool_size = (self.len_max - filter + 1, 1),
strides = (1, 1),
padding = 'valid',
)(conv)
conv_pools.append(pooled)
# 拼接
x = Concatenate()(conv_pools)
x = Flatten()(x)
#########################################################################
output = Dense(units=self.label, activation=self.activate_classify)(x)
self.model = Model(inputs=self.word_embedding.input, outputs=output)
self.model.summary(120)
示例11: recursion
# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import reverse [as 别名]
def recursion(self, input_energy, mask=None, go_backwards=False,
return_sequences=True, return_logZ=True, input_length=None):
"""Forward (alpha) or backward (beta) recursion
If `return_logZ = True`, compute the logZ, the normalization constant:
\[ Z = \sum_{y1, y2, y3} exp(-E) # energy
= \sum_{y1, y2, y3} exp(-(u1' y1 + y1' W y2 + u2' y2 + y2' W y3 + u3' y3))
= sum_{y2, y3} (exp(-(u2' y2 + y2' W y3 + u3' y3))
sum_{y1} exp(-(u1' y1' + y1' W y2))) \]
Denote:
\[ S(y2) := sum_{y1} exp(-(u1' y1 + y1' W y2)), \]
\[ Z = sum_{y2, y3} exp(log S(y2) - (u2' y2 + y2' W y3 + u3' y3)) \]
\[ logS(y2) = log S(y2) = log_sum_exp(-(u1' y1' + y1' W y2)) \]
Note that:
yi's are one-hot vectors
u1, u3: boundary energies have been merged
If `return_logZ = False`, compute the Viterbi's best path lookup table.
"""
chain_energy = self.chain_kernel
# shape=(1, F, F): F=num of output features. 1st F is for t-1, 2nd F for t
chain_energy = K.expand_dims(chain_energy, 0)
# shape=(B, F), dtype=float32
prev_target_val = K.zeros_like(input_energy[:, 0, :])
if go_backwards:
input_energy = K.reverse(input_energy, 1)
if mask is not None:
mask = K.reverse(mask, 1)
initial_states = [prev_target_val, K.zeros_like(prev_target_val[:, :1])]
constants = [chain_energy]
if mask is not None:
mask2 = K.cast(K.concatenate([mask, K.zeros_like(mask[:, :1])], axis=1),
K.floatx())
constants.append(mask2)
def _step(input_energy_i, states):
return self.step(input_energy_i, states, return_logZ)
target_val_last, target_val_seq, _ = K.rnn(_step, input_energy,
initial_states,
constants=constants,
input_length=input_length,
unroll=self.unroll)
if return_sequences:
if go_backwards:
target_val_seq = K.reverse(target_val_seq, 1)
return target_val_seq
else:
return target_val_last
示例12: viterbi_decoding
# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import reverse [as 别名]
def viterbi_decoding(self, X, mask=None):
input_energy = self.activation(K.dot(X, self.kernel) + self.bias)
if self.use_boundary:
input_energy = self.add_boundary_energy(
input_energy, mask, self.left_boundary, self.right_boundary)
argmin_tables = self.recursion(input_energy, mask, return_logZ=False)
argmin_tables = K.cast(argmin_tables, 'int32')
# backward to find best path, `initial_best_idx` can be any,
# as all elements in the last argmin_table are the same
argmin_tables = K.reverse(argmin_tables, 1)
# matrix instead of vector is required by tf `K.rnn`
initial_best_idx = [K.expand_dims(argmin_tables[:, 0, 0])]
if K.backend() == 'theano':
from theano import tensor as T
initial_best_idx = [T.unbroadcast(initial_best_idx[0], 1)]
def gather_each_row(params, indices):
n = K.shape(indices)[0]
if K.backend() == 'theano':
from theano import tensor as T
return params[T.arange(n), indices]
elif K.backend() == 'tensorflow':
import tensorflow as tf
indices = K.transpose(K.stack([tf.range(n), indices]))
return tf.gather_nd(params, indices)
else:
raise NotImplementedError
def find_path(argmin_table, best_idx):
next_best_idx = gather_each_row(argmin_table, best_idx[0][:, 0])
next_best_idx = K.expand_dims(next_best_idx)
if K.backend() == 'theano':
from theano import tensor as T
next_best_idx = T.unbroadcast(next_best_idx, 1)
return next_best_idx, [next_best_idx]
_, best_paths, _ = K.rnn(find_path, argmin_tables, initial_best_idx,
input_length=K.int_shape(X)[1], unroll=self.unroll)
best_paths = K.reverse(best_paths, 1)
best_paths = K.squeeze(best_paths, 2)
return K.one_hot(best_paths, self.units)
示例13: test_Bidirectional_merged_value
# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import reverse [as 别名]
def test_Bidirectional_merged_value(merge_mode):
rnn = layers.LSTM
samples = 2
dim = 5
timesteps = 3
units = 3
X = [np.random.rand(samples, timesteps, dim)]
if merge_mode == 'sum':
merge_func = lambda y, y_rev: y + y_rev
elif merge_mode == 'mul':
merge_func = lambda y, y_rev: y * y_rev
elif merge_mode == 'ave':
merge_func = lambda y, y_rev: (y + y_rev) / 2
elif merge_mode == 'concat':
merge_func = lambda y, y_rev: np.concatenate((y, y_rev), axis=-1)
else:
merge_func = lambda y, y_rev: [y, y_rev]
# basic case
inputs = Input((timesteps, dim))
layer = wrappers.Bidirectional(rnn(units, return_sequences=True), merge_mode=merge_mode)
f_merged = K.function([inputs], _to_list(layer(inputs)))
f_forward = K.function([inputs], [layer.forward_layer.call(inputs)])
f_backward = K.function([inputs], [K.reverse(layer.backward_layer.call(inputs), 1)])
y_merged = f_merged(X)
y_expected = _to_list(merge_func(f_forward(X)[0], f_backward(X)[0]))
assert len(y_merged) == len(y_expected)
for x1, x2 in zip(y_merged, y_expected):
assert_allclose(x1, x2, atol=1e-5)
# test return_state
inputs = Input((timesteps, dim))
layer = wrappers.Bidirectional(rnn(units, return_state=True), merge_mode=merge_mode)
f_merged = K.function([inputs], layer(inputs))
f_forward = K.function([inputs], layer.forward_layer.call(inputs))
f_backward = K.function([inputs], layer.backward_layer.call(inputs))
n_states = len(layer.layer.states)
y_merged = f_merged(X)
y_forward = f_forward(X)
y_backward = f_backward(X)
y_expected = _to_list(merge_func(y_forward[0], y_backward[0]))
assert len(y_merged) == len(y_expected) + n_states * 2
for x1, x2 in zip(y_merged, y_expected):
assert_allclose(x1, x2, atol=1e-5)
# test if the state of a BiRNN is the concatenation of the underlying RNNs
y_merged = y_merged[-n_states * 2:]
y_forward = y_forward[-n_states:]
y_backward = y_backward[-n_states:]
for state_birnn, state_inner in zip(y_merged, y_forward + y_backward):
assert_allclose(state_birnn, state_inner, atol=1e-5)