本文整理汇总了Python中keras.backend.repeat_elements方法的典型用法代码示例。如果您正苦于以下问题:Python backend.repeat_elements方法的具体用法?Python backend.repeat_elements怎么用?Python backend.repeat_elements使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类keras.backend
的用法示例。
在下文中一共展示了backend.repeat_elements方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: call
# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import repeat_elements [as 别名]
def call(self, x):
mean = K.mean(x, axis=-1)
std = K.std(x, axis=-1)
if len(x.shape) == 3:
mean = K.permute_dimensions(
K.repeat(mean, x.shape.as_list()[-1]),
[0,2,1]
)
std = K.permute_dimensions(
K.repeat(std, x.shape.as_list()[-1]),
[0,2,1]
)
elif len(x.shape) == 2:
mean = K.reshape(
K.repeat_elements(mean, x.shape.as_list()[-1], 0),
(-1, x.shape.as_list()[-1])
)
std = K.reshape(
K.repeat_elements(mean, x.shape.as_list()[-1], 0),
(-1, x.shape.as_list()[-1])
)
return self._g * (x - mean) / (std + self._epsilon) + self._b
示例2: call
# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import repeat_elements [as 别名]
def call(self, x, mask=None):
if K.image_dim_ordering == "th":
_, f, r, c = self.shape
else:
_, r, c, f = self.shape
squared = K.square(x)
pooled = K.pool2d(squared, (self.n, self.n), strides=(1, 1),
padding="same", pool_mode="avg")
if K.image_dim_ordering == "th":
summed = K.sum(pooled, axis=1, keepdims=True)
averaged = self.alpha * K.repeat_elements(summed, f, axis=1)
else:
summed = K.sum(pooled, axis=3, keepdims=True)
averaged = self.alpha * K.repeat_elements(summed, f, axis=3)
denom = K.pow(self.k + averaged, self.beta)
return x / denom
示例3: call
# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import repeat_elements [as 别名]
def call(self, inputs, training=None):
inputs_expand = K.expand_dims(inputs, 1)
inputs_tiled = K.tile(inputs_expand, [1, self.num_capsule, 1, 1])
if(self.channels!=0):
W2 = K.repeat_elements(self.W,int(self.input_num_capsule/self.channels),1)
else:
W2 = self.W
inputs_hat = K.map_fn(lambda x: K.batch_dot(x, W2, [2, 3]) , elems=inputs_tiled)
b = tf.zeros(shape=[K.shape(inputs_hat)[0], self.num_capsule, self.input_num_capsule])
assert self.routings > 0, 'The routings should be > 0.'
for i in range(self.routings):
c = tf.nn.softmax(b, dim=1)
outputs = squash(K.batch_dot(c, inputs_hat, [2, 2])+ self.B)
if i < self.routings - 1:
b += K.batch_dot(outputs, inputs_hat, [2, 3])
return outputs
示例4: make_warped_stack
# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import repeat_elements [as 别名]
def make_warped_stack(args):
mask = args[0]
src_in = args[1]
trans_in = args[2]
for i in range(11):
mask_i = K.repeat_elements(tf.expand_dims(mask[:, :, :, i], 3), 3, 3)
src_masked = tf.multiply(mask_i, src_in)
if i == 0:
warps = src_masked
else:
warp_i = affine_warp(src_masked, trans_in[:, :, :, i])
warps = tf.concat([warps, warp_i], 3)
return warps
示例5: call
# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import repeat_elements [as 别名]
def call(self, input_tensor, mask=None):
x = input_tensor[0]
y = input_tensor[1]
mask = mask[0]
y = K.transpose(K.dot(self.W, K.transpose(y)))
y = K.expand_dims(y, axis=-2)
y = K.repeat_elements(y, self.steps, axis=1)
eij = K.sum(x * y, axis=-1)
if self.bias:
b = K.repeat_elements(self.b, self.steps, axis=0)
eij += b
eij = K.tanh(eij)
a = K.exp(eij)
if mask is not None:
a *= K.cast(mask, K.floatx())
a /= K.cast(K.sum(a, axis=1, keepdims=True) + K.epsilon(), K.floatx())
return a
示例6: QRNcell
# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import repeat_elements [as 别名]
def QRNcell():
xq = Input(batch_shape=(batch_size, embedding_dim * 2))
# Split into context and query
xt = Lambda(lambda x, dim: x[:, :dim], arguments={'dim': embedding_dim},
output_shape=lambda s: (s[0], s[1] / 2))(xq)
qt = Lambda(lambda x, dim: x[:, dim:], arguments={'dim': embedding_dim},
output_shape=lambda s: (s[0], s[1] / 2))(xq)
h_tm1 = Input(batch_shape=(batch_size, embedding_dim))
zt = Dense(1, activation='sigmoid', bias_initializer=Constant(2.5))(multiply([xt, qt]))
zt = Lambda(lambda x, dim: K.repeat_elements(x, dim, axis=1), arguments={'dim': embedding_dim})(zt)
ch = Dense(embedding_dim, activation='tanh')(concatenate([xt, qt], axis=-1))
rt = Dense(1, activation='sigmoid')(multiply([xt, qt]))
rt = Lambda(lambda x, dim: K.repeat_elements(x, dim, axis=1), arguments={'dim': embedding_dim})(rt)
ht = add([multiply([zt, ch, rt]), multiply([Lambda(lambda x: 1 - x, output_shape=lambda s: s)(zt), h_tm1])])
return RecurrentModel(input=xq, output=ht, initial_states=[h_tm1], final_states=[ht], return_sequences=True)
#
# Load data
#
示例7: kl_divergence
# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import repeat_elements [as 别名]
def kl_divergence(y_true, y_pred):
max_y_pred = K.repeat_elements(K.expand_dims(K.repeat_elements(K.expand_dims(K.max(K.max(y_pred, axis=2), axis=2)),
shape_r_out, axis=-1)), shape_c_out, axis=-1)
y_pred /= max_y_pred
sum_y_true = K.repeat_elements(K.expand_dims(K.repeat_elements(K.expand_dims(K.sum(K.sum(y_true, axis=2), axis=2)),
shape_r_out, axis=-1)), shape_c_out, axis=-1)
sum_y_pred = K.repeat_elements(K.expand_dims(K.repeat_elements(K.expand_dims(K.sum(K.sum(y_pred, axis=2), axis=2)),
shape_r_out, axis=-1)), shape_c_out, axis=-1)
y_true /= (sum_y_true + K.epsilon())
y_pred /= (sum_y_pred + K.epsilon())
return 10 * K.sum(K.sum(y_true * K.log((y_true / (y_pred + K.epsilon())) + K.epsilon()), axis=-1), axis=-1)
# Correlation Coefficient Loss
示例8: nss
# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import repeat_elements [as 别名]
def nss(y_true, y_pred):
max_y_pred = K.repeat_elements(K.expand_dims(K.repeat_elements(K.expand_dims(K.max(K.max(y_pred, axis=2), axis=2)),
shape_r_out, axis=-1)), shape_c_out, axis=-1)
y_pred /= max_y_pred
y_pred_flatten = K.batch_flatten(y_pred)
y_mean = K.mean(y_pred_flatten, axis=-1)
y_mean = K.repeat_elements(K.expand_dims(K.repeat_elements(K.expand_dims(K.expand_dims(y_mean)),
shape_r_out, axis=-1)), shape_c_out, axis=-1)
y_std = K.std(y_pred_flatten, axis=-1)
y_std = K.repeat_elements(K.expand_dims(K.repeat_elements(K.expand_dims(K.expand_dims(y_std)),
shape_r_out, axis=-1)), shape_c_out, axis=-1)
y_pred = (y_pred - y_mean) / (y_std + K.epsilon())
return -(K.sum(K.sum(y_true * y_pred, axis=2), axis=2) / K.sum(K.sum(y_true, axis=2), axis=2))
# Gaussian priors initialization
示例9: step
# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import repeat_elements [as 别名]
def step(self, x, states):
x_shape = K.shape(x)
h_tm1 = states[0]
c_tm1 = states[1]
e = self.V_a(K.tanh(self.W_a(h_tm1) + self.U_a(x)))
a = K.reshape(K.softmax(K.batch_flatten(e)), (x_shape[0], 1, x_shape[2], x_shape[3]))
x_tilde = x * K.repeat_elements(a, x_shape[1], 1)
x_i = self.W_i(x_tilde)
x_f = self.W_f(x_tilde)
x_c = self.W_c(x_tilde)
x_o = self.W_o(x_tilde)
i = self.inner_activation(x_i + self.U_i(h_tm1))
f = self.inner_activation(x_f + self.U_f(h_tm1))
c = f * c_tm1 + i * self.activation(x_c + self.U_c(h_tm1))
o = self.inner_activation(x_o + self.U_o(h_tm1))
h = o * self.activation(c)
return h, [h, c]
示例10: test_repeat_elements
# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import repeat_elements [as 别名]
def test_repeat_elements(self):
reps = 3
for ndims in [1, 2, 3]:
shape = np.arange(2, 2 + ndims)
arr = np.arange(np.prod(shape)).reshape(shape)
for rep_axis in range(ndims):
np_rep = np.repeat(arr, reps, axis=rep_axis)
check_single_tensor_operation('repeat_elements', arr, BACKENDS,
rep=reps, axis=rep_axis,
assert_value_with_ref=np_rep)
if K.backend() != 'cntk':
shape = list(shape)
shape[rep_axis] = None
x = K.placeholder(shape=shape)
y = K.repeat_elements(x, reps, axis=rep_axis)
assert y._keras_shape == tuple(shape)
assert y._keras_shape == K.int_shape(y)
示例11: call
# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import repeat_elements [as 别名]
def call(self, input_tensor, mask=None):
x = input_tensor[0]
aspect = input_tensor[1]
mask = mask[0]
aspect = K.transpose(K.dot(self.W, K.transpose(aspect)))
aspect = K.expand_dims(aspect, axis=-2)
aspect = K.repeat_elements(aspect, self.steps, axis=1)
eij = K.sum(x*aspect, axis=-1)
if self.bias:
b = K.repeat_elements(self.b, self.steps, axis=0)
eij += b
eij = K.tanh(eij)
a = K.exp(eij)
if mask is not None:
a *= K.cast(mask, K.floatx())
a /= K.cast(K.sum(a, axis=1, keepdims=True) + K.epsilon(), K.floatx())
return a
示例12: step
# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import repeat_elements [as 别名]
def step(self, inputs, states):
h_tm1 = states[0] # previous memory
#B_U = states[1] # dropout matrices for recurrent units
#B_W = states[2]
h_tm1a = K.dot(h_tm1, self.Wa)
eij = K.dot(K.tanh(h_tm1a + K.dot(inputs[:, :self.h_dim], self.Ua)), self.Va)
eijs = K.repeat_elements(eij, self.h_dim, axis=1)
#alphaij = K.softmax(eijs) # batchsize * lenh h batchsize * lenh * ndim
#ci = K.permute_dimensions(K.permute_dimensions(self.h, [2,0,1]) * alphaij, [1,2,0])
#cisum = K.sum(ci, axis=1)
cisum = eijs*inputs[:, :self.h_dim]
#print(K.shape(cisum), cisum.shape, ci.shape, self.h.shape, alphaij.shape, x.shape)
zr = K.sigmoid(K.dot(inputs[:, self.h_dim:], self.Wzr) + K.dot(h_tm1, self.Uzr) + K.dot(cisum, self.Czr))
zi = zr[:, :self.units]
ri = zr[:, self.units: 2 * self.units]
si_ = K.tanh(K.dot(inputs[:, self.h_dim:], self.W) + K.dot(ri*h_tm1, self.U) + K.dot(cisum, self.C))
si = (1-zi) * h_tm1 + zi * si_
return si, [si] #h_tm1, [h_tm1]
示例13: call
# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import repeat_elements [as 别名]
def call(self, inputs, mask=None):
"""
Extract the GRU output for the target document index for the forward
and backwards GRU outputs, and then concatenate them. If the target word index
is at index l, and there are T total document words, the desired output
in the forward pass is at GRU_f[l] (ignoring the batched case) and the
desired output of the backwards pass is at GRU_b[T-l].
We need to get these two vectors and concatenate them. To do so, we'll
reverse the backwards GRU, which allows us to use the same index/mask for both.
"""
# TODO(nelson): deal with case where cloze token appears multiple times
# in a question.
word_indices, gru_f, gru_b = inputs
index_mask = K.cast(K.equal((K.ones_like(word_indices) * self.target_index),
word_indices), "float32")
gru_mask = K.repeat_elements(K.expand_dims(index_mask, -1), K.int_shape(gru_f)[-1], K.ndim(gru_f) - 1)
masked_gru_f = switch(gru_mask, gru_f, K.zeros_like(gru_f))
selected_gru_f = K.sum(masked_gru_f, axis=1)
masked_gru_b = switch(gru_mask, gru_b, K.zeros_like(gru_b))
selected_gru_b = K.sum(masked_gru_b, axis=1)
selected_bigru = K.concatenate([selected_gru_f, selected_gru_b], axis=-1)
return selected_bigru
示例14: call
# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import repeat_elements [as 别名]
def call(self, v, **kwargs):
assert (len(self.input_dims) == len(self.output_dims) and
self.input_dims[0] == self.output_dims[0])
# possibly shrink spatial axis by pooling elements
if len(self.input_dims) == 4 and (self.input_dims[1] > self.output_dims[1] or self.input_dims[2] > self.output_dims[2]):
assert (self.input_dims[1] % self.output_dims[1] == 0 and
self.input_dims[2] % self.output_dims[2] == 0)
pool_sizes = (self.input_dims[1] / self.output_dims[1],
self.input_dims[2] / self.output_dims[2])
strides = pool_sizes
v = K.pool2d(
v, pool_size=pool_sizes, strides=strides,
padding='same', data_format='channels_last', pool_mode='avg')
# possibly extend spatial axis by repeating elements
for i in range(1, len(self.input_dims) - 1):
if self.input_dims[i] < self.output_dims[i]:
assert self.output_dims[i] % self.input_dims[i] == 0
v = K.repeat_elements(
v, rep=int(self.output_dims[i] / self.input_dims[i]),
axis=i)
return v
开发者ID:PacktPublishing,项目名称:Hands-On-Generative-Adversarial-Networks-with-Keras,代码行数:27,代码来源:layers.py
示例15: call
# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import repeat_elements [as 别名]
def call(self, x, mask=None):
a = x[0]
b = x[1]
a = K.mean(a, axis=0, keepdims=True)
b = K.mean(b, axis=0, keepdims=True)
a /= K.sum(a, keepdims=True)
b /= K.sum(b, keepdims=True)
a = K.clip(a, K.epsilon(), 1)
b = K.clip(b, K.epsilon(), 1)
loss = K.sum(a*K.log(a/b), axis=-1, keepdims=True) \
+ K.sum(b*K.log(b/a), axis=-1, keepdims=True)
loss = K.repeat_elements(loss, self.batch_size, axis=0)
return loss