当前位置: 首页>>代码示例>>Python>>正文


Python backend.ones_like方法代码示例

本文整理汇总了Python中keras.backend.ones_like方法的典型用法代码示例。如果您正苦于以下问题:Python backend.ones_like方法的具体用法?Python backend.ones_like怎么用?Python backend.ones_like使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在keras.backend的用法示例。


在下文中一共展示了backend.ones_like方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: get_constants

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import ones_like [as 别名]
def get_constants(self, x):
    constants = []
    if 0 < self.dropout_U < 1:
      ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1)))
      ones = K.tile(ones, (1, self.output_dim))
      B_U = [K.in_train_phase(K.dropout(ones, self.dropout_U), ones) for _ in range(3)]
      constants.append(B_U)
    else:
      constants.append([K.cast_to_floatx(1.) for _ in range(3)])

    if 0 < self.dropout_W < 1:
      input_shape = self.input_spec[0].shape
      input_dim = input_shape[-1]
      ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1)))
      ones = K.tile(ones, (1, input_dim))
      B_W = [K.in_train_phase(K.dropout(ones, self.dropout_W), ones) for _ in range(3)]
      constants.append(B_W)
    else:
      constants.append([K.cast_to_floatx(1.) for _ in range(3)])
    return constants 
开发者ID:LaurentMazare,项目名称:deep-models,代码行数:22,代码来源:rhn.py

示例2: get_constants

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import ones_like [as 别名]
def get_constants(self, x):
		constants = []
		if 0 < self.dropout_U < 1:
			ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1)))
			ones = K.tile(ones, (1, self.hidden_recurrent_dim))
			B_U = K.in_train_phase(K.dropout(ones, self.dropout_U), ones)
			constants.append(B_U)
		else:
			constants.append(K.cast_to_floatx(1.))
        
		if self.consume_less == 'cpu' and 0 < self.dropout_W < 1:
			input_shape = self.input_spec[0].shape
			input_dim = input_shape[-1]
			ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1)))
			ones = K.tile(ones, (1, input_dim))
			B_W = K.in_train_phase(K.dropout(ones, self.dropout_W), ones)
			constants.append(B_W)
		else:
			constants.append(K.cast_to_floatx(1.))

		return constants 
开发者ID:bnsnapper,项目名称:keras_bn_library,代码行数:23,代码来源:rnnrbm.py

示例3: get_constants

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import ones_like [as 别名]
def get_constants(self, x):
		constants = []
		if 0 < self.dropout_U < 1:
			ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1)))
			ones = K.tile(ones, (1, self.input_dim))
			B_U = [K.in_train_phase(K.dropout(ones, self.dropout_U), ones) for _ in range(4)]
			constants.append(B_U)
		else:
			constants.append([K.cast_to_floatx(1.) for _ in range(4)])

		if 0 < self.dropout_W < 1:
			input_shape = K.int_shape(x)
			input_dim = input_shape[-1]
			ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1)))
			ones = K.tile(ones, (1, int(input_dim)))
			B_W = [K.in_train_phase(K.dropout(ones, self.dropout_W), ones) for _ in range(4)]
			constants.append(B_W)
		else:
			constants.append([K.cast_to_floatx(1.) for _ in range(4)])
		return constants 
开发者ID:bnsnapper,项目名称:keras_bn_library,代码行数:22,代码来源:recurrent.py

示例4: get_constants

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import ones_like [as 别名]
def get_constants(self, x):
        constants = []
        if 0 < self.dropout_U < 1:
            ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1)))
            ones = K.tile(ones, (1, self.output_dim))
            B_U = [K.in_train_phase(K.dropout(ones, self.dropout_U), ones) for _ in range(4)]
            constants.append(B_U)
        else:
            constants.append([K.cast_to_floatx(1.) for _ in range(4)])

        if 0 < self.dropout_W < 1:
            input_shape = self.input_spec[0].shape
            input_dim = input_shape[-1]
            ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1)))
            ones = K.tile(ones, (1, int(input_dim)))
            B_W = [K.in_train_phase(K.dropout(ones, self.dropout_W), ones) for _ in range(4)]
            constants.append(B_W)
        else:
            constants.append([K.cast_to_floatx(1.) for _ in range(4)])
        return constants 
开发者ID:SigmaQuan,项目名称:NTM-Keras,代码行数:22,代码来源:lstm2ntm.py

示例5: get_constants

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import ones_like [as 别名]
def get_constants(self, x):
      constants = []
      if 0 < self.dropout_U < 1:
          ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1)))
          ones = K.concatenate([ones] * self.output_dim, 1)
          B_U = K.in_train_phase(K.dropout(ones, self.dropout_U), ones)
          constants.append(B_U)
      else:
          constants.append(K.cast_to_floatx(1.))
      if self.consume_less == 'cpu' and 0 < self.dropout_W < 1:
          input_shape = self.input_spec[0].shape
          input_dim = input_shape[-1]
          ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1)))
          ones = K.concatenate([ones] * input_dim, 1)
          B_W = K.in_train_phase(K.dropout(ones, self.dropout_W), ones)
          constants.append(B_W)
      else:
          constants.append(K.cast_to_floatx(1.))
      return constants 
开发者ID:commaai,项目名称:research,代码行数:21,代码来源:layers.py

示例6: weighted_dice_loss

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import ones_like [as 别名]
def weighted_dice_loss(y_true, y_pred):
    y_true = K.cast(y_true, 'float32')
    y_pred = K.cast(y_pred, 'float32')
    # if we want to get same size of output, kernel size must be odd number
    if K.int_shape(y_pred)[1] == 128:
        kernel_size = 11
    elif K.int_shape(y_pred)[1] == 256:
        kernel_size = 21
    elif K.int_shape(y_pred)[1] == 512:
        kernel_size = 21
    elif K.int_shape(y_pred)[1] == 1024:
        kernel_size = 41
    else:
        raise ValueError('Unexpected image size')
    averaged_mask = K.pool2d(
        y_true, pool_size=(kernel_size, kernel_size), strides=(1, 1), padding='same', pool_mode='avg')
    border = K.cast(K.greater(averaged_mask, 0.005), 'float32') * K.cast(K.less(averaged_mask, 0.995), 'float32')
    weight = K.ones_like(averaged_mask)
    w0 = K.sum(weight)
    weight += border * 2
    w1 = K.sum(weight)
    weight *= (w0 / w1)
    loss = 1 - weighted_dice_coeff(y_true, y_pred, weight)
    return loss 
开发者ID:petrosgk,项目名称:Kaggle-Carvana-Image-Masking-Challenge,代码行数:26,代码来源:losses.py

示例7: weighted_bce_dice_loss

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import ones_like [as 别名]
def weighted_bce_dice_loss(y_true, y_pred):
    y_true = K.cast(y_true, 'float32')
    y_pred = K.cast(y_pred, 'float32')
    # if we want to get same size of output, kernel size must be odd number
    if K.int_shape(y_pred)[1] == 128:
        kernel_size = 11
    elif K.int_shape(y_pred)[1] == 256:
        kernel_size = 21
    elif K.int_shape(y_pred)[1] == 512:
        kernel_size = 21
    elif K.int_shape(y_pred)[1] == 1024:
        kernel_size = 41
    else:
        raise ValueError('Unexpected image size')
    averaged_mask = K.pool2d(
        y_true, pool_size=(kernel_size, kernel_size), strides=(1, 1), padding='same', pool_mode='avg')
    border = K.cast(K.greater(averaged_mask, 0.005), 'float32') * K.cast(K.less(averaged_mask, 0.995), 'float32')
    weight = K.ones_like(averaged_mask)
    w0 = K.sum(weight)
    weight += border * 2
    w1 = K.sum(weight)
    weight *= (w0 / w1)
    loss = weighted_bce_loss(y_true, y_pred, weight) + (1 - weighted_dice_coeff(y_true, y_pred, weight))
    return loss 
开发者ID:petrosgk,项目名称:Kaggle-Carvana-Image-Masking-Challenge,代码行数:26,代码来源:losses.py

示例8: get_constants

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import ones_like [as 别名]
def get_constants(self, x):
        constants = []
        if 0 < self.dropout_U < 1:
            ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1)))
            ones = K.tile(ones, (1, self.output_dim))
            B_U = [K.in_train_phase(K.dropout(ones, self.dropout_U), ones) for _ in range(3)]
            constants.append(B_U)
        else:
            constants.append([K.cast_to_floatx(1.) for _ in range(3)])

        if 0 < self.dropout_W < 1:
            input_shape = K.int_shape(x)
            input_dim = input_shape[-1]
            ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1)))
            ones = K.tile(ones, (1, int(input_dim)))
            B_W = [K.in_train_phase(K.dropout(ones, self.dropout_W), ones) for _ in range(3)]
            constants.append(B_W)
        else:
            constants.append([K.cast_to_floatx(1.) for _ in range(3)])
        return constants 
开发者ID:wentaozhu,项目名称:recurrent-attention-for-QA-SQUAD-based-on-keras,代码行数:22,代码来源:QnA.py

示例9: get_constants

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import ones_like [as 别名]
def get_constants(self, inputs, training=None):
        constants = []
        '''if 0 < self.dropout_U < 1:
            ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1)))
            ones = K.tile(ones, (1, self.units))
            B_U = [K.in_train_phase(K.dropout(ones, self.dropout_U), ones) for _ in range(3)]
            constants.append(B_U)
        else:
            constants.append([K.cast_to_floatx(1.) for _ in range(3)])

        if 0 < self.dropout_W < 1:
            input_shape = K.int_shape(x)
            input_dim = input_shape[-1]
            ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1)))
            ones = K.tile(ones, (1, int(input_dim)))
            B_W = [K.in_train_phase(K.dropout(ones, self.dropout_W), ones) for _ in range(3)]
            constants.append(B_W)
        else:'''
        constants.append([K.cast_to_floatx(1.) for _ in range(3)])
        return constants 
开发者ID:wentaozhu,项目名称:recurrent-attention-for-QA-SQUAD-based-on-keras,代码行数:22,代码来源:rnnlayer.py

示例10: call

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import ones_like [as 别名]
def call(self, x, mask=None):
        mean = super(IntraAttention, self).call(x, mask)
        # x: (batch_size, input_length, input_dim)
        # mean: (batch_size, input_dim)
        ones = K.expand_dims(K.mean(K.ones_like(x), axis=(0, 2)), dim=0)  # (1, input_length)
        # (batch_size, input_length, input_dim)
        tiled_mean = K.permute_dimensions(K.dot(K.expand_dims(mean), ones), (0, 2, 1))
        if mask is not None:
            if K.ndim(mask) > K.ndim(x):
                # Assuming this is because of the bug in Bidirectional. Temporary fix follows.
                # TODO: Fix Bidirectional.
                mask = K.any(mask, axis=(-2, -1))
            if K.ndim(mask) < K.ndim(x):
                mask = K.expand_dims(mask)
            x = switch(mask, x, K.zeros_like(x))
        # (batch_size, input_length, proj_dim)
        projected_combination = K.tanh(K.dot(x, self.vector_projector) + K.dot(tiled_mean, self.mean_projector))
        scores = K.dot(projected_combination, self.scorer)  # (batch_size, input_length)
        weights = K.softmax(scores)  # (batch_size, input_length)
        attended_x = K.sum(K.expand_dims(weights) * x, axis=1)  # (batch_size, input_dim)
        return attended_x 
开发者ID:pdasigi,项目名称:onto-lstm,代码行数:23,代码来源:pooling.py

示例11: _ternarize

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import ones_like [as 别名]
def _ternarize(W, H=1):
    '''The weights' ternarization function, 

    # References:
    - [Recurrent Neural Networks with Limited Numerical Precision](http://arxiv.org/abs/1608.06902)
    - [Ternary Weight Networks](http://arxiv.org/abs/1605.04711)
    '''
    W /= H

    ones = K.ones_like(W)
    zeros = K.zeros_like(W)
    Wt = switch(W > 0.5, ones, switch(W <= -0.5, -ones, zeros))

    Wt *= H

    return Wt 
开发者ID:DingKe,项目名称:nn_playground,代码行数:18,代码来源:ternary_ops.py

示例12: call

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import ones_like [as 别名]
def call(self, inputs, mask=None):
        assert(isinstance(inputs, list) and len(inputs) == 5)
        uQ, WQ_u, WQ_v, v, VQ_r = inputs
        uQ_mask = mask[0] if mask is not None else None

        ones = K.ones_like(K.sum(uQ, axis=1, keepdims=True)) # (B, 1, 2H)
        s_hat = K.dot(uQ, WQ_u)
        s_hat += K.dot(ones, K.dot(WQ_v, VQ_r))
        s_hat = K.tanh(s_hat)
        s = K.dot(s_hat, v)
        s = K.batch_flatten(s)

        a = softmax(s, mask=uQ_mask, axis=1)

        rQ = K.batch_dot(uQ, a, axes=[1, 1])

        return rQ 
开发者ID:YerevaNN,项目名称:R-NET-in-Keras,代码行数:19,代码来源:QuestionPooling.py

示例13: contingency_table

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import ones_like [as 别名]
def contingency_table(y, z):
    """Compute contingency table."""
    y = K.round(y)
    z = K.round(z)

    def count_matches(a, b):
        tmp = K.concatenate([a, b])
        return K.sum(K.cast(K.all(tmp, -1), K.floatx()))

    ones = K.ones_like(y)
    zeros = K.zeros_like(y)
    y_ones = K.equal(y, ones)
    y_zeros = K.equal(y, zeros)
    z_ones = K.equal(z, ones)
    z_zeros = K.equal(z, zeros)

    tp = count_matches(y_ones, z_ones)
    tn = count_matches(y_zeros, z_zeros)
    fp = count_matches(y_zeros, z_ones)
    fn = count_matches(y_ones, z_zeros)

    return (tp, tn, fp, fn) 
开发者ID:cangermueller,项目名称:deepcpg,代码行数:24,代码来源:metrics.py

示例14: get_constants

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import ones_like [as 别名]
def get_constants(self, x):
        constants = []
        if 0 < self.dropout_U < 1:
            ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1)))
            ones = K.concatenate([ones] * self.output_dim, 1)
            B_U = [K.in_train_phase(K.dropout(ones, self.dropout_U), ones) for _ in range(4)]
            constants.append(B_U)
        else:
            constants.append([K.cast_to_floatx(1.) for _ in range(4)])

        if 0 < self.dropout_W < 1:
            input_shape = self.input_spec[0].shape
            input_dim = input_shape[-1]
            ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1)))
            ones = K.concatenate([ones] * input_dim, 1)
            B_W = [K.in_train_phase(K.dropout(ones, self.dropout_W), ones) for _ in range(4)]
            constants.append(B_W)
        else:
            constants.append([K.cast_to_floatx(1.) for _ in range(4)])
        return constants 
开发者ID:braingineer,项目名称:ikelos,代码行数:22,代码来源:rtn.py

示例15: call

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import ones_like [as 别名]
def call(self, inputs, mask=None):
        """
        Extract the GRU output for the target document index for the forward
        and backwards GRU outputs, and then concatenate them. If the target word index
        is at index l, and there are T total document words, the desired output
        in the forward pass is at GRU_f[l] (ignoring the batched case) and the
        desired output of the backwards pass is at GRU_b[T-l].

        We need to get these two vectors and concatenate them. To do so, we'll
        reverse the backwards GRU, which allows us to use the same index/mask for both.
        """
        # TODO(nelson): deal with case where cloze token appears multiple times
        # in a question.
        word_indices, gru_f, gru_b = inputs
        index_mask = K.cast(K.equal((K.ones_like(word_indices) * self.target_index),
                                    word_indices), "float32")
        gru_mask = K.repeat_elements(K.expand_dims(index_mask, -1), K.int_shape(gru_f)[-1], K.ndim(gru_f) - 1)
        masked_gru_f = switch(gru_mask, gru_f, K.zeros_like(gru_f))
        selected_gru_f = K.sum(masked_gru_f, axis=1)
        masked_gru_b = switch(gru_mask, gru_b, K.zeros_like(gru_b))
        selected_gru_b = K.sum(masked_gru_b, axis=1)
        selected_bigru = K.concatenate([selected_gru_f, selected_gru_b], axis=-1)
        return selected_bigru 
开发者ID:allenai,项目名称:deep_qa,代码行数:25,代码来源:bigru_index_selector.py


注:本文中的keras.backend.ones_like方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。