本文整理汇总了Python中keras.backend.ndim方法的典型用法代码示例。如果您正苦于以下问题:Python backend.ndim方法的具体用法?Python backend.ndim怎么用?Python backend.ndim使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类keras.backend
的用法示例。
在下文中一共展示了backend.ndim方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: get_output
# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import ndim [as 别名]
def get_output(self, train=False):
def format_shape(shape):
if K._BACKEND == 'tensorflow':
def trf(x):
try:
return int(x)
except TypeError:
return x
return map(trf, shape)
return shape
X = self.get_input(train)
in_shape = format_shape(K.shape(X))
batch_flatten_len = K.prod(in_shape[:2])
cast_in_shape = (batch_flatten_len, ) + tuple(in_shape[i] for i in range(2, K.ndim(X)))
pre_outs = self.layer(K.reshape(X, cast_in_shape))
out_shape = format_shape(K.shape(pre_outs))
cast_out_shape = (in_shape[0], in_shape[1]) + tuple(out_shape[i] for i in range(1, K.ndim(pre_outs)))
outputs = K.reshape(pre_outs, cast_out_shape)
return outputs
示例2: get_realpart
# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import ndim [as 别名]
def get_realpart(x):
image_format = K.image_data_format()
ndim = K.ndim(x)
input_shape = K.shape(x)
if (image_format == 'channels_first' and ndim != 3) or ndim == 2:
input_dim = input_shape[1] // 2
return x[:, :input_dim]
input_dim = input_shape[-1] // 2
if ndim == 3:
return x[:, :, :input_dim]
elif ndim == 4:
return x[:, :, :, :input_dim]
elif ndim == 5:
return x[:, :, :, :, :input_dim]
示例3: get_imagpart
# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import ndim [as 别名]
def get_imagpart(x):
image_format = K.image_data_format()
ndim = K.ndim(x)
input_shape = K.shape(x)
if (image_format == 'channels_first' and ndim != 3) or ndim == 2:
input_dim = input_shape[1] // 2
return x[:, input_dim:]
input_dim = input_shape[-1] // 2
if ndim == 3:
return x[:, :, input_dim:]
elif ndim == 4:
return x[:, :, :, input_dim:]
elif ndim == 5:
return x[:, :, :, :, input_dim:]
示例4: _softmax
# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import ndim [as 别名]
def _softmax(x, axis=-1, alpha=1):
"""
building on keras implementation, allow alpha parameter
Softmax activation function.
# Arguments
x : Tensor.
axis: Integer, axis along which the softmax normalization is applied.
alpha: a value to multiply all x
# Returns
Tensor, output of softmax transformation.
# Raises
ValueError: In case `dim(x) == 1`.
"""
x = alpha * x
ndim = K.ndim(x)
if ndim == 2:
return K.softmax(x)
elif ndim > 2:
e = K.exp(x - K.max(x, axis=axis, keepdims=True))
s = K.sum(e, axis=axis, keepdims=True)
return e / s
else:
raise ValueError('Cannot apply softmax to a tensor that is 1D')
示例5: sequence_masking
# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import ndim [as 别名]
def sequence_masking(x, mask, mode=0, axis=None):
"""为序列条件mask的函数
mask: 形如(batch_size, seq_len)的0-1矩阵;
mode: 如果是0,则直接乘以mask;
如果是1,则在padding部分减去一个大正数。
axis: 序列所在轴,默认为1;
"""
if mask is None or mode not in [0, 1]:
return x
else:
if axis is None:
axis = 1
if axis == -1:
axis = K.ndim(x) - 1
assert axis > 0, 'axis muse be greater than 0'
for _ in range(axis - 1):
mask = K.expand_dims(mask, 1)
for _ in range(K.ndim(x) - K.ndim(mask) - axis + 1):
mask = K.expand_dims(mask, K.ndim(mask))
if mode == 0:
return x * mask
else:
return x - (1 - mask) * 1e12
示例6: gram_matrix
# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import ndim [as 别名]
def gram_matrix(x):
"""
Computes the outer-product of the input tensor x.
Input
-----
- x: input tensor of shape (C x H x W)
Returns
-------
- x . x^T
Note that this can be computed efficiently if x is reshaped
as a tensor of shape (C x H*W).
"""
# assert K.ndim(x) == 3
if K.image_dim_ordering() == 'th':
features = K.batch_flatten(x)
else:
features = K.batch_flatten(K.permute_dimensions(x, (2, 0, 1)))
return K.dot(features, K.transpose(features))
示例7: softmax
# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import ndim [as 别名]
def softmax(x, axis=1):
"""Softmax activation function.
# Arguments
x : Tensor.
axis: Integer, axis along which the softmax normalization is applied.
# Returns
Tensor, output of softmax transformation.
# Raises
ValueError: In case `dim(x) == 1`.
"""
ndim = K.ndim(x)
if ndim == 2:
return K.softmax(x)
elif ndim > 2:
e = K.exp(x - K.max(x, axis=axis, keepdims=True))
s = K.sum(e, axis=axis, keepdims=True)
return e / s
else:
raise ValueError('Cannot apply softmax to a tensor that is 1D')
示例8: call
# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import ndim [as 别名]
def call(self, X, mask=None):
if mask is not None:
assert K.ndim(mask) == 2, 'Input mask to CRF must have dim 2 if not None'
if self.test_mode == 'viterbi':
test_output = self.viterbi_decoding(X, mask)
else:
test_output = self.get_marginal_prob(X, mask)
self.uses_learning_phase = True
if self.learn_mode == 'join':
train_output = K.zeros_like(K.dot(X, self.kernel))
out = K.in_train_phase(train_output, test_output)
else:
if self.test_mode == 'viterbi':
train_output = self.get_marginal_prob(X, mask)
out = K.in_train_phase(train_output, test_output)
else:
out = test_output
return out
示例9: __init__
# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import ndim [as 别名]
def __init__(self, output_dim, init='glorot_uniform', activation='relu',weights=None,
W_regularizer=None, b_regularizer=None, activity_regularizer=None,
W_constraint=None, b_constraint=None, input_dim=None, **kwargs):
self.W_initializer = initializers.get(init)
self.b_initializer = initializers.get('zeros')
self.activation = activations.get(activation)
self.output_dim = output_dim
self.input_dim = input_dim
self.W_regularizer = regularizers.get(W_regularizer)
self.b_regularizer = regularizers.get(b_regularizer)
self.activity_regularizer = regularizers.get(activity_regularizer)
self.W_constraint = constraints.get(W_constraint)
self.b_constraint = constraints.get(b_constraint)
self.initial_weights = weights
self.input_spec = InputSpec(ndim=2)
if self.input_dim:
kwargs['input_shape'] = (self.input_dim,)
super(SparseFullyConnectedLayer, self).__init__(**kwargs)
示例10: build
# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import ndim [as 别名]
def build(self, input_shape):
assert len(input_shape) == 2
input_dim = input_shape[1]
#self.input_spec = InputSpec(dtype=K.floatx(), shape=(None, input_dim))
self.input_spec = InputSpec(ndim=2, axes={1: input_dim})
self.W = self.add_weight(
shape=(input_dim, self.output_dim),
initializer=self.W_initializer,
name='SparseFullyConnected_W',
regularizer=self.W_regularizer,
constraint=self.W_constraint)
self.b = self.add_weight(
shape=(self.output_dim,),
initializer=self.b_initializer,
name='SparseFullyConnected_b',
regularizer=self.b_regularizer,
constraint=self.b_constraint)
if self.initial_weights is not None:
self.set_weights(self.initial_weights)
del self.initial_weights
#self.built = True
#super(SparseFullyConnectedLayer, self).build(input_shape)
示例11: style_loss
# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import ndim [as 别名]
def style_loss(style_image, target_image, style_masks, target_masks):
'''Calculate style loss between style_image and target_image,
in all regions.
'''
assert 3 == K.ndim(style_image) == K.ndim(target_image)
assert 3 == K.ndim(style_masks) == K.ndim(target_masks)
loss = K.variable(0)
for i in range(num_labels):
if K.image_data_format() == 'channels_first':
style_mask = style_masks[i, :, :]
target_mask = target_masks[i, :, :]
else:
style_mask = style_masks[:, :, i]
target_mask = target_masks[:, :, i]
loss += region_style_loss(style_image,
target_image, style_mask, target_mask)
return loss
示例12: total_variation_loss
# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import ndim [as 别名]
def total_variation_loss(x):
assert 4 == K.ndim(x)
if K.image_data_format() == 'channels_first':
a = K.square(x[:, :, :img_nrows - 1, :img_ncols - 1] -
x[:, :, 1:, :img_ncols - 1])
b = K.square(x[:, :, :img_nrows - 1, :img_ncols - 1] -
x[:, :, :img_nrows - 1, 1:])
else:
a = K.square(x[:, :img_nrows - 1, :img_ncols - 1, :] -
x[:, 1:, :img_ncols - 1, :])
b = K.square(x[:, :img_nrows - 1, :img_ncols - 1, :] -
x[:, :img_nrows - 1, 1:, :])
return K.sum(K.pow(a + b, 1.25))
# Overall loss is the weighted sum of content_loss, style_loss and tv_loss
# Each individual loss uses features from image/mask models.
示例13: region_style_loss
# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import ndim [as 别名]
def region_style_loss(style_image, target_image, style_mask, target_mask):
'''Calculate style loss between style_image and target_image,
for one common region specified by their (boolean) masks
'''
assert 3 == K.ndim(style_image) == K.ndim(target_image)
assert 2 == K.ndim(style_mask) == K.ndim(target_mask)
if K.image_data_format() == 'channels_first':
masked_style = style_image * style_mask
masked_target = target_image * target_mask
num_channels = K.shape(style_image)[0]
else:
masked_style = K.permute_dimensions(
style_image, (2, 0, 1)) * style_mask
masked_target = K.permute_dimensions(
target_image, (2, 0, 1)) * target_mask
num_channels = K.shape(style_image)[-1]
num_channels = K.cast(num_channels, dtype='float32')
s = gram_matrix(masked_style) / K.mean(style_mask) / num_channels
c = gram_matrix(masked_target) / K.mean(target_mask) / num_channels
return K.mean(K.square(s - c))
示例14: call
# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import ndim [as 别名]
def call(self, x, mask=None):
sims = []
for n, sim in zip(self.n, self.similarities):
for _ in range(n):
batch_size = K.shape(x)[0]
idx = K.random_uniform((batch_size,), low=0, high=batch_size,
dtype='int32')
x_shuffled = K.gather(x, idx)
pair_sim = sim(x, x_shuffled)
for _ in range(K.ndim(x) - 1):
pair_sim = K.expand_dims(pair_sim, dim=1)
sims.append(pair_sim)
return K.concatenate(sims, axis=-1)
示例15: call
# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import ndim [as 别名]
def call(self, x, mask=None):
assert self.built, 'Layer must be built before being called'
input_shape = K.int_shape(x)
reduction_axes = list(range(len(input_shape)))
del reduction_axes[self.axis]
broadcast_shape = [1] * len(input_shape)
broadcast_shape[self.axis] = input_shape[self.axis]
if sorted(reduction_axes) == range(K.ndim(x))[:-1]:
x_normed = K.batch_normalization(
x, self.running_mean, self.running_std,
self.beta, self.gamma,
epsilon=self.epsilon)
else:
# need broadcasting
broadcast_running_mean = K.reshape(self.running_mean, broadcast_shape)
broadcast_running_std = K.reshape(self.running_std, broadcast_shape)
broadcast_beta = K.reshape(self.beta, broadcast_shape)
broadcast_gamma = K.reshape(self.gamma, broadcast_shape)
x_normed = K.batch_normalization(
x, broadcast_running_mean, broadcast_running_std,
broadcast_beta, broadcast_gamma,
epsilon=self.epsilon)
return x_normed