当前位置: 首页>>代码示例>>Python>>正文


Python backend.less_equal方法代码示例

本文整理汇总了Python中keras.backend.less_equal方法的典型用法代码示例。如果您正苦于以下问题:Python backend.less_equal方法的具体用法?Python backend.less_equal怎么用?Python backend.less_equal使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在keras.backend的用法示例。


在下文中一共展示了backend.less_equal方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: rpn_loss_regr

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import less_equal [as 别名]
def rpn_loss_regr(num_anchors):
	def rpn_loss_regr_fixed_num(y_true, y_pred):
		if K.image_dim_ordering() == 'th':
			x = y_true[:, 4 * num_anchors:, :, :] - y_pred
			x_abs = K.abs(x)
			x_bool = K.less_equal(x_abs, 1.0)
			return lambda_rpn_regr * K.sum(
				y_true[:, :4 * num_anchors, :, :] * (x_bool * (0.5 * x * x) + (1 - x_bool) * (x_abs - 0.5))) / K.sum(epsilon + y_true[:, :4 * num_anchors, :, :])
		else:
			x = y_true[:, :, :, 4 * num_anchors:] - y_pred
			x_abs = K.abs(x)
			x_bool = K.cast(K.less_equal(x_abs, 1.0), tf.float32)

			return lambda_rpn_regr * K.sum(
				y_true[:, :, :, :4 * num_anchors] * (x_bool * (0.5 * x * x) + (1 - x_bool) * (x_abs - 0.5))) / K.sum(epsilon + y_true[:, :, :, :4 * num_anchors])

	return rpn_loss_regr_fixed_num 
开发者ID:akshaylamba,项目名称:FasterRCNN_KERAS,代码行数:19,代码来源:losses.py

示例2: rpn_loss_regr

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import less_equal [as 别名]
def rpn_loss_regr(num_anchors):
    def rpn_loss_regr_fixed_num(y_true, y_pred):
        if K.image_dim_ordering() == 'th':
            x = y_true[:, 4 * num_anchors:, :, :] - y_pred
            x_abs = K.abs(x)
            x_bool = K.less_equal(x_abs, 1.0)
            return lambda_rpn_regr * K.sum(
                y_true[:, :4 * num_anchors, :, :] * (x_bool * (0.5 * x * x) + (1 - x_bool) * (x_abs - 0.5))) / K.sum(epsilon + y_true[:, :4 * num_anchors, :, :])
        else:
            x = y_true[:, :, :, 4 * num_anchors:] - y_pred
            x_abs = K.abs(x)
            x_bool = K.cast(K.less_equal(x_abs, 1.0), tf.float32)

            return lambda_rpn_regr * K.sum(
                y_true[:, :, :, :4 * num_anchors] * (x_bool * (0.5 * x * x) + (1 - x_bool) * (x_abs - 0.5))) / K.sum(epsilon + y_true[:, :, :, :4 * num_anchors])

    return rpn_loss_regr_fixed_num 
开发者ID:you359,项目名称:Keras-FasterRCNN,代码行数:19,代码来源:losses.py

示例3: softmax_activation

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import less_equal [as 别名]
def softmax_activation(self, mem):
        """Softmax activation."""

        # spiking_samples = k.less_equal(k.random_uniform([self.config.getint(
        #     'simulation', 'batch_size'), 1]), 300 * self.dt / 1000.)
        # spiking_neurons = k.T.repeat(spiking_samples, 10, axis=1)
        # activ = k.T.nnet.softmax(mem)
        # max_activ = k.max(activ, axis=1, keepdims=True)
        # output_spikes = k.equal(activ, max_activ).astype(k.floatx())
        # output_spikes = k.T.set_subtensor(output_spikes[k.equal(
        #     spiking_neurons, 0).nonzero()], 0.)
        # new_and_reset_mem = k.T.set_subtensor(mem[spiking_neurons.nonzero()],
        #                                       0.)
        # self.add_update([(self.mem, new_and_reset_mem)])
        # return output_spikes

        return k.T.mul(k.less_equal(k.random_uniform(mem.shape),
                                    k.softmax(mem)), self.v_thresh) 
开发者ID:NeuromorphicProcessorProject,项目名称:snn_toolbox,代码行数:20,代码来源:temporal_mean_rate_theano.py

示例4: class_loss_regr

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import less_equal [as 别名]
def class_loss_regr(num_classes):
	def class_loss_regr_fixed_num(y_true, y_pred):
		x = y_true[:, :, 4*num_classes:] - y_pred
		x_abs = K.abs(x)
		x_bool = K.cast(K.less_equal(x_abs, 1.0), 'float32')
		return lambda_cls_regr * K.sum(y_true[:, :, :4*num_classes] * (x_bool * (0.5 * x * x) + (1 - x_bool) * (x_abs - 0.5))) / K.sum(epsilon + y_true[:, :, :4*num_classes])
	return class_loss_regr_fixed_num 
开发者ID:akshaylamba,项目名称:FasterRCNN_KERAS,代码行数:9,代码来源:losses.py

示例5: class_loss_regr

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import less_equal [as 别名]
def class_loss_regr(num_classes):
    def class_loss_regr_fixed_num(y_true, y_pred):
        x = y_true[:, :, 4*num_classes:] - y_pred
        x_abs = K.abs(x)
        x_bool = K.cast(K.less_equal(x_abs, 1.0), 'float32')
        return lambda_cls_regr * K.sum(y_true[:, :, :4*num_classes] * (x_bool * (0.5 * x * x) + (1 - x_bool) * (x_abs - 0.5))) / K.sum(epsilon + y_true[:, :, :4*num_classes])
    return class_loss_regr_fixed_num 
开发者ID:you359,项目名称:Keras-FasterRCNN,代码行数:9,代码来源:losses.py


注:本文中的keras.backend.less_equal方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。