当前位置: 首页>>代码示例>>Python>>正文


Python backend.learning_phase方法代码示例

本文整理汇总了Python中keras.backend.learning_phase方法的典型用法代码示例。如果您正苦于以下问题:Python backend.learning_phase方法的具体用法?Python backend.learning_phase怎么用?Python backend.learning_phase使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在keras.backend的用法示例。


在下文中一共展示了backend.learning_phase方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: get_deep_representations

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import learning_phase [as 别名]
def get_deep_representations(model, X, batch_size=256):
    """
    TODO
    :param model:
    :param X:
    :param batch_size:
    :return:
    """
    # last hidden layer is always at index -4
    output_dim = model.layers[-4].output.shape[-1].value
    get_encoding = K.function(
        [model.layers[0].input, K.learning_phase()],
        [model.layers[-4].output]
    )

    n_batches = int(np.ceil(X.shape[0] / float(batch_size)))
    output = np.zeros(shape=(len(X), output_dim))
    for i in range(n_batches):
        output[i * batch_size:(i + 1) * batch_size] = \
            get_encoding([X[i * batch_size:(i + 1) * batch_size], 0])[0]

    return output 
开发者ID:StephanZheng,项目名称:neural-fingerprinting,代码行数:24,代码来源:util.py

示例2: one_shot_method

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import learning_phase [as 别名]
def one_shot_method(prediction, x, curr_sample, curr_target, p_t):
    grad_est = np.zeros((BATCH_SIZE, IMAGE_ROWS, IMAGE_COLS, NUM_CHANNELS))
    DELTA = np.random.randint(2, size=(BATCH_SIZE, IMAGE_ROWS, IMAGE_COLS, NUM_CHANNELS))
    np.place(DELTA, DELTA==0, -1)

    y_plus = np.clip(curr_sample + args.delta * DELTA, CLIP_MIN, CLIP_MAX)
    y_minus = np.clip(curr_sample - args.delta * DELTA, CLIP_MIN, CLIP_MAX)

    if args.CW_loss == 0:
        pred_plus = K.get_session().run([prediction], feed_dict={x: y_plus, K.learning_phase(): 0})[0]
        pred_plus_t = pred_plus[np.arange(BATCH_SIZE), list(curr_target)]

        pred_minus = K.get_session().run([prediction], feed_dict={x: y_minus, K.learning_phase(): 0})[0]
        pred_minus_t = pred_minus[np.arange(BATCH_SIZE), list(curr_target)]

        num_est = (pred_plus_t - pred_minus_t)

    grad_est = num_est[:, None, None, None]/(args.delta * DELTA)

    # Getting gradient of the loss
    if args.CW_loss == 0:
        loss_grad = -1.0 * grad_est/p_t[:, None, None, None]

    return loss_grad 
开发者ID:sunblaze-ucb,项目名称:blackbox-attacks,代码行数:26,代码来源:cifar10_query_based.py

示例3: image_detection

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import learning_phase [as 别名]
def image_detection(sess, image_path, image_file, colors):
    # Preprocess your image
    image, image_data = preprocess_image(image_path + image_file, model_image_size = (416, 416))
    
    # Run the session with the correct tensors and choose the correct placeholders in the feed_dict.
    # You'll need to use feed_dict={yolo_model.input: ... , K.learning_phase(): 0})
    out_scores, out_boxes, out_classes = sess.run([scores, boxes, classes], feed_dict={yolo_model.input:image_data, K.learning_phase():0})

    # Print predictions info
    print('Found {} boxes for {}'.format(len(out_boxes), image_file))
    
    # Draw bounding boxes on the image file
    image = draw_boxes(image, out_scores, out_boxes, out_classes, class_names, colors)

    # Save the predicted bounding box on the image
    #image.save(os.path.join("out", image_file), quality=90)
    cv2.imwrite(os.path.join("out", "tiny_yolo_" + image_file), image, [cv2.IMWRITE_JPEG_QUALITY, 90])
    
    return out_scores, out_boxes, out_classes 
开发者ID:kaka-lin,项目名称:object-detection,代码行数:21,代码来源:test_tiny_yolo.py

示例4: image_detection

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import learning_phase [as 别名]
def image_detection(sess, image_path, image_file, colors):
    # Preprocess your image
    image, image_data = preprocess_image(image_path + image_file, model_image_size = (416, 416))
    
    # Run the session with the correct tensors and choose the correct placeholders in the feed_dict.
    # You'll need to use feed_dict={yolo_model.input: ... , K.learning_phase(): 0})
    out_scores, out_boxes, out_classes = sess.run([scores, boxes, classes], feed_dict={yolov3.input:image_data, K.learning_phase():0})

    # Print predictions info
    print('Found {} boxes for {}'.format(len(out_boxes), image_file))
    
    # Draw bounding boxes on the image file
    image = draw_boxes(image, out_scores, out_boxes, out_classes, class_names, colors)

    # Save the predicted bounding box on the image
    #image.save(os.path.join("out", image_file), quality=90)
    cv2.imwrite(os.path.join("out", "yolov3_" + image_file), image, [cv2.IMWRITE_JPEG_QUALITY, 90])
    
    return out_scores, out_boxes, out_classes 
开发者ID:kaka-lin,项目名称:object-detection,代码行数:21,代码来源:test_yolov3.py

示例5: get_feature_map_4

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import learning_phase [as 别名]
def get_feature_map_4(model, im):
    im = im.astype(np.float32)
    dim_ordering = K.image_dim_ordering()
    if dim_ordering == 'th':
        # 'RGB'->'BGR'
        im = im[::-1, :, :]
        # Zero-center by mean pixel
        im[0, :, :] -= 103.939
        im[1, :, :] -= 116.779
        im[2, :, :] -= 123.68
    else:
        # 'RGB'->'BGR'
        im = im[:, :, ::-1]
        # Zero-center by mean pixel
        im[:, :, 0] -= 103.939
        im[:, :, 1] -= 116.779
        im[:, :, 2] -= 123.68
    im = im.transpose((2, 0, 1))
    im = np.expand_dims(im, axis=0)
    inputs = [K.learning_phase()] + model.inputs
    _convout1_f = K.function(inputs, [model.layers[23].output])
    feature_map = _convout1_f([0] + [im])
    feature_map = np.array([feature_map])
    feature_map = feature_map[0, 0, 0, :, :, :]
    return feature_map 
开发者ID:imatge-upc,项目名称:detection-2016-nipsws,代码行数:27,代码来源:features.py

示例6: get_image_descriptor_for_image

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import learning_phase [as 别名]
def get_image_descriptor_for_image(image, model):
    im = cv2.resize(image, (224, 224)).astype(np.float32)
    dim_ordering = K.image_dim_ordering()
    if dim_ordering == 'th':
        # 'RGB'->'BGR'
        im = im[::-1, :, :]
        # Zero-center by mean pixel
        im[0, :, :] -= 103.939
        im[1, :, :] -= 116.779
        im[2, :, :] -= 123.68
    else:
        # 'RGB'->'BGR'
        im = im[:, :, ::-1]
        # Zero-center by mean pixel
        im[:, :, 0] -= 103.939
        im[:, :, 1] -= 116.779
        im[:, :, 2] -= 123.68
    im = im.transpose((2, 0, 1))
    im = np.expand_dims(im, axis=0)
    inputs = [K.learning_phase()] + model.inputs
    _convout1_f = K.function(inputs, [model.layers[33].output])
    return _convout1_f([0] + [im]) 
开发者ID:imatge-upc,项目名称:detection-2016-nipsws,代码行数:24,代码来源:features.py

示例7: get_conv_image_descriptor_for_image

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import learning_phase [as 别名]
def get_conv_image_descriptor_for_image(image, model):
    im = cv2.resize(image, (224, 224)).astype(np.float32)
    dim_ordering = K.image_dim_ordering()
    if dim_ordering == 'th':
        # 'RGB'->'BGR'
        im = im[::-1, :, :]
        # Zero-center by mean pixel
        im[0, :, :] -= 103.939
        im[1, :, :] -= 116.779
        im[2, :, :] -= 123.68
    else:
        # 'RGB'->'BGR'
        im = im[:, :, ::-1]
        # Zero-center by mean pixel
        im[:, :, 0] -= 103.939
        im[:, :, 1] -= 116.779
        im[:, :, 2] -= 123.68
    im = im.transpose((2, 0, 1))
    im = np.expand_dims(im, axis=0)
    inputs = [K.learning_phase()] + model.inputs
    _convout1_f = K.function(inputs, [model.layers[31].output])
    return _convout1_f([0] + [im]) 
开发者ID:imatge-upc,项目名称:detection-2016-nipsws,代码行数:24,代码来源:features.py

示例8: get_mc_predictions

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import learning_phase [as 别名]
def get_mc_predictions(model, X, nb_iter=50, batch_size=256):
    """
    TODO
    :param model:
    :param X:
    :param nb_iter:
    :param batch_size:
    :return:
    """
    output_dim = model.layers[-1].output.shape[-1].value
    get_output = K.function(
        [model.layers[0].input, K.learning_phase()],
        [model.layers[-1].output]
    )

    def predict():
        n_batches = int(np.ceil(X.shape[0] / float(batch_size)))
        output = np.zeros(shape=(len(X), output_dim))
        for i in range(n_batches):
            output[i * batch_size:(i + 1) * batch_size] = \
                get_output([X[i * batch_size:(i + 1) * batch_size], 1])[0]
        return output

    preds_mc = []
    for i in tqdm(range(nb_iter)):
        preds_mc.append(predict())

    return np.asarray(preds_mc) 
开发者ID:StephanZheng,项目名称:neural-fingerprinting,代码行数:30,代码来源:util.py

示例9: _get_learning_phase

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import learning_phase [as 别名]
def _get_learning_phase(self):
        if self.uses_learning_phase and not isinstance(K.learning_phase(), int):
            return [K.learning_phase()]
        else:
            return [] 
开发者ID:codekansas,项目名称:gandlf,代码行数:7,代码来源:models.py

示例10: get_activations

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import learning_phase [as 别名]
def get_activations(model, layer_idx, X_batch):
    get_activations = K.function([model.layers[0].input, K.learning_phase()], [model.layers[layer_idx].output,])
    activations = get_activations([X_batch,0])
    return activations 
开发者ID:sergiooramas,项目名称:tartarus,代码行数:6,代码来源:predict.py

示例11: loss

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import learning_phase [as 别名]
def loss(X):
    X = X.reshape((1, FLAGS.IMAGE_ROWS, FLAGS.IMAGE_COLS, FLAGS.NUM_CHANNELS))
    confidence = K.get_session().run([prediction], feed_dict={x: X, K.learning_phase(): 0})[0]
    # confidence[:,curr_target] = 1e-4
    max_conf_i = np.argmax(confidence, 1)
    max_conf = np.max(confidence, 1)[0]
    if max_conf_i == curr_target:
        return max_conf
    elif max_conf_i != curr_target:
        return -1.0 * max_conf 
开发者ID:sunblaze-ucb,项目名称:blackbox-attacks,代码行数:12,代码来源:particle_swarm_attack.py

示例12: logit_loss

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import learning_phase [as 别名]
def logit_loss(X):
    X = X.reshape((1, FLAGS.IMAGE_ROWS, FLAGS.IMAGE_COLS, FLAGS.NUM_CHANNELS))
    confidence = K.get_session().run([prediction], feed_dict={x: X, K.learning_phase(): 0})[0]
    # confidence[:,curr_target] = 1e-4
    logits = np.log(confidence)

    logit_t = logits[:, curr_target]
    logits[:, curr_target] = 1e-4
    max_logit_i = np.argmax(logits, 1)
    logit_max = logits[:, max_logit_i]
    return logit_t - logit_max 
开发者ID:sunblaze-ucb,项目名称:blackbox-attacks,代码行数:13,代码来源:particle_swarm_attack.py

示例13: visualize_attention

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import learning_phase [as 别名]
def visualize_attention(test_seq,
    model,
    id2wrd,
    n):
    """
    Visualize the top n words that the model pays attention to. 
    We first do a forward pass and get the output of the LSTM layer.
    THen we apply the function of the Attention layer and get the weights.
    Finally we obtain and print the words of the input sequence 
    that have these weights.


    """

    get_layer_output = K.function([model.layers[0].input, K.learning_phase()], [model.layers[4].output])
    out = get_layer_output([test_seq, ])[0]  # test mode

    att_w = model.layers[5].get_weights()

    eij = np.tanh(np.dot(out[0], att_w[0]))
    ai = np.exp(eij)
    weights = ai/np.sum(ai)
    weights = np.sum(weights,axis=1)

    topKeys = np.argpartition(weights,-n)[-n:]

    print ' '.join([id2wrd[wrd_id] for wrd_id in test_seq[0] if wrd_id != 0.]) 
    
    for k in test_seq[0][topKeys]:
        if k != 0.:
            print id2wrd[k]
    
    return 
开发者ID:AlexGidiotis,项目名称:Document-Classifier-LSTM,代码行数:35,代码来源:utils.py

示例14: __init__

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import learning_phase [as 别名]
def __init__(self, num_rows, num_cols, weights_path='vgg16_weights.h5',
            pool_mode='avg', last_layer='conv5_1', learning_phase=None):
        self.learning_phase = learning_phase
        self.last_layer = last_layer
        self.net = get_model(num_rows, num_cols, weights_path=weights_path,
            pool_mode=pool_mode, last_layer=last_layer)
        self.net_input = self.net.get_layer('vgg_input')
        self._f_layer_outputs = {} 
开发者ID:awentzonline,项目名称:keras-vgg-buddy,代码行数:10,代码来源:models.py

示例15: get_f_layer

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import learning_phase [as 别名]
def get_f_layer(self, layer_name):
        '''Create a function for the response of a layer.'''
        inputs = [self.net_input]
        if self.learning_phase is not None:
            inputs.append(K.learning_phase())
        return K.function(inputs, [self.get_layer_output(layer_name)]) 
开发者ID:awentzonline,项目名称:keras-vgg-buddy,代码行数:8,代码来源:models.py


注:本文中的keras.backend.learning_phase方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。