当前位置: 首页>>代码示例>>Python>>正文


Python backend.get_session方法代码示例

本文整理汇总了Python中keras.backend.get_session方法的典型用法代码示例。如果您正苦于以下问题:Python backend.get_session方法的具体用法?Python backend.get_session怎么用?Python backend.get_session使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在keras.backend的用法示例。


在下文中一共展示了backend.get_session方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: load_ckpt

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import get_session [as 别名]
def load_ckpt(ckpt_name, var_scope_name, scope, constructor, input_tensor, label_offset, load_weights, **kwargs):
    """ 
    Arguments
        ckpt_name       file name of the checkpoint
        var_scope_name  name of the variable scope
        scope           arg_scope
        constructor     constructor of the model
        input_tensor    tensor of input image
        label_offset    whether it is 1000 classes or 1001 classes, if it is 1001, remove class 0
        load_weights    whether to load weights
        kwargs 
            is_training 
            create_aux_logits 
    """
    with slim.arg_scope(scope):
        logits, endpoints = constructor(\
                input_tensor, num_classes=1000+label_offset, \
                scope=var_scope_name, **kwargs)
    if load_weights:
        init_fn = slim.assign_from_checkpoint_fn(\
                ckpt_name, slim.get_model_variables(var_scope_name))
        init_fn(K.get_session())
    return logits, endpoints 
开发者ID:sangxia,项目名称:nips-2017-adversarial,代码行数:25,代码来源:model_wrappers.py

示例2: one_shot_method

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import get_session [as 别名]
def one_shot_method(prediction, x, curr_sample, curr_target, p_t):
    grad_est = np.zeros((BATCH_SIZE, IMAGE_ROWS, IMAGE_COLS, NUM_CHANNELS))
    DELTA = np.random.randint(2, size=(BATCH_SIZE, IMAGE_ROWS, IMAGE_COLS, NUM_CHANNELS))
    np.place(DELTA, DELTA==0, -1)

    y_plus = np.clip(curr_sample + args.delta * DELTA, CLIP_MIN, CLIP_MAX)
    y_minus = np.clip(curr_sample - args.delta * DELTA, CLIP_MIN, CLIP_MAX)

    if args.CW_loss == 0:
        pred_plus = K.get_session().run([prediction], feed_dict={x: y_plus, K.learning_phase(): 0})[0]
        pred_plus_t = pred_plus[np.arange(BATCH_SIZE), list(curr_target)]

        pred_minus = K.get_session().run([prediction], feed_dict={x: y_minus, K.learning_phase(): 0})[0]
        pred_minus_t = pred_minus[np.arange(BATCH_SIZE), list(curr_target)]

        num_est = (pred_plus_t - pred_minus_t)

    grad_est = num_est[:, None, None, None]/(args.delta * DELTA)

    # Getting gradient of the loss
    if args.CW_loss == 0:
        loss_grad = -1.0 * grad_est/p_t[:, None, None, None]

    return loss_grad 
开发者ID:sunblaze-ucb,项目名称:blackbox-attacks,代码行数:26,代码来源:cifar10_query_based.py

示例3: CW_est

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import get_session [as 别名]
def CW_est(logits, x, x_plus_i, x_minus_i, curr_sample, curr_target):
    curr_logits = K.get_session().run([logits], feed_dict={x: curr_sample})[0]
    # So that when max is taken, it returns max among classes apart from the
    # target
    curr_logits[np.arange(BATCH_SIZE), list(curr_target)] = -1e4
    max_indices = np.argmax(curr_logits, 1)
    logit_plus = K.get_session().run([logits], feed_dict={x: x_plus_i})[0]
    logit_plus_t = logit_plus[np.arange(BATCH_SIZE), list(curr_target)]
    logit_plus_max = logit_plus[np.arange(BATCH_SIZE), list(max_indices)]

    logit_minus = K.get_session().run([logits], feed_dict={x: x_minus_i})[0]
    logit_minus_t = logit_minus[np.arange(BATCH_SIZE), list(curr_target)]
    logit_minus_max = logit_minus[np.arange(BATCH_SIZE), list(max_indices)]

    logit_t_grad_est = (logit_plus_t - logit_minus_t)/args.delta
    logit_max_grad_est = (logit_plus_max - logit_minus_max)/args.delta

    return logit_t_grad_est/2.0, logit_max_grad_est/2.0 
开发者ID:sunblaze-ucb,项目名称:blackbox-attacks,代码行数:20,代码来源:query_based_attack.py

示例4: test_ShapGradientExplainer

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import get_session [as 别名]
def test_ShapGradientExplainer(self):

    #     model = VGG16(weights='imagenet', include_top=True)
    #     X, y = shap.datasets.imagenet50()
    #     to_explain = X[[39, 41]]
    #
    #     url = "https://s3.amazonaws.com/deep-learning-models/image-models/imagenet_class_index.json"
    #     fname = shap.datasets.cache(url)
    #     with open(fname) as f:
    #         class_names = json.load(f)
    #
    #     def map2layer(x, layer):
    #         feed_dict = dict(zip([model.layers[0].input], [preprocess_input(x.copy())]))
    #         return K.get_session().run(model.layers[layer].input, feed_dict)
    #
    #     e = GradientExplainer((model.layers[7].input, model.layers[-1].output),
    #                           map2layer(preprocess_input(X.copy()), 7))
    #     shap_values, indexes = e.explain_instance(map2layer(to_explain, 7), ranked_outputs=2)
    #
          print("Skipped Shap GradientExplainer") 
开发者ID:IBM,项目名称:AIX360,代码行数:22,代码来源:test_shap.py

示例5: to_savedmodel

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import get_session [as 别名]
def to_savedmodel(model, export_path):
    """Convert the Keras HDF5 model into TensorFlow SavedModel."""

    builder = saved_model_builder.SavedModelBuilder(export_path)

    signature = predict_signature_def(
        inputs={'input': model.inputs[0]}, outputs={'income': model.outputs[0]})

    with K.get_session() as sess:
        builder.add_meta_graph_and_variables(
            sess=sess,
            tags=[tag_constants.SERVING],
            signature_def_map={
                signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY: signature
            })
        builder.save() 
开发者ID:GoogleCloudPlatform,项目名称:cloudml-samples,代码行数:18,代码来源:model.py

示例6: compile_func

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import get_session [as 别名]
def compile_func(inputs, outputs):
    if (isinstance(inputs, list)==False):
        print("Wrapping the inputs in a list...")
        inputs = [inputs]
    assert isinstance(inputs, list)
    def func_to_return(inp):
        if len(inp) > len(inputs) and len(inputs)==1:
            print("Wrapping the inputs in a list...")
            inp = [inp]
        assert len(inp)==len(inputs),\
            ("length of provided list should be "
             +str(len(inputs))+" for tensors "+str(inputs)
             +" but got input of length "+str(len(inp)))
        feed_dict = {}
        for input_tensor, input_val in zip(inputs, inp):
            feed_dict[input_tensor] = input_val 
        sess = get_session()
        return sess.run(outputs, feed_dict=feed_dict)  
    return func_to_return 
开发者ID:kundajelab,项目名称:deeplift,代码行数:21,代码来源:util.py

示例7: _average_metrics_in_place

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import get_session [as 别名]
def _average_metrics_in_place(self, logs):
        logs = logs or {}
        reduced_logs = {}
        # Reduce every metric among workers. Sort metrics by name
        # to ensure consistent order.
        for metric, value in sorted(logs.items()):
            if metric not in self.variables:
                self.variables[metric], self.allreduce_ops[metric] = \
                    self._make_variable(metric, value)
            else:
                K.set_value(self.variables[metric], value)
            reduced_logs[metric] = \
                K.get_session().run(self.allreduce_ops[metric])
        # Override the reduced values back into logs dictionary
        # for other callbacks to use.
        for metric, value in reduced_logs.items():
            logs[metric] = value 
开发者ID:mlperf,项目名称:training_results_v0.6,代码行数:19,代码来源:callbacks.py

示例8: keras_to_tensorflow

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import get_session [as 别名]
def keras_to_tensorflow(keras_model, output_dir, model_name, out_prefix="output_", log_tensorboard=True):

    if os.path.exists(output_dir) == False:
        os.mkdir(output_dir)

    out_nodes = []

    for i in range(len(keras_model.outputs)):
        out_nodes.append(out_prefix + str(i + 1))
        tf.identity(keras_model.output[i], out_prefix + str(i + 1))

        sess = K.get_session()

        init_graph = sess.graph.as_graph_def()

        main_graph = graph_util.convert_variables_to_constants(sess, init_graph, out_nodes)

        graph_io.write_graph(main_graph, output_dir, name=model_name, as_text=False)

        if log_tensorboard:
            import_pb_to_tensorboard.import_to_tensorboard(os.path.join(output_dir, model_name), output_dir) 
开发者ID:mogoweb,项目名称:aiexamples,代码行数:23,代码来源:image_classifier_tf.py

示例9: export_savedmodel

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import get_session [as 别名]
def export_savedmodel(model):
  print("input: {}, output: {}".format(model.input, model.output))
  model_signature = tf.saved_model.signature_def_utils.predict_signature_def(
      inputs={'input': model.input}, outputs={'output': model.output})

  model_path = "model"
  model_version = 1
  export_path = os.path.join(
      compat.as_bytes(model_path), compat.as_bytes(str(model_version)))
  logging.info("Export the model to {}".format(export_path))

  builder = tf.saved_model.builder.SavedModelBuilder(export_path)
  builder.add_meta_graph_and_variables(
      sess=K.get_session(),
      tags=[tf.saved_model.tag_constants.SERVING],
      clear_devices=True,
      signature_def_map={
          tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY:
          model_signature
      })
  builder.save() 
开发者ID:tobegit3hub,项目名称:tensorflow_examples,代码行数:23,代码来源:mnist_dnn.py

示例10: on_epoch_end

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import get_session [as 别名]
def on_epoch_end(self, epoch, logs={}):
        
        # Save training and validation losses
        logz.log_tabular('train_loss', logs.get('loss'))
        logz.log_tabular('val_loss', logs.get('val_loss'))
        logz.dump_tabular()

        # Save model every 'period' epochs
        if (epoch+1) % self.period == 0:
            filename = self.filepath + '/model_weights_' + str(epoch) + '.h5'
            print("Saved model at {}".format(filename))
            self.model.save_weights(filename, overwrite=True)

        # Hard mining
        sess = K.get_session()
        mse_function = self.batch_size-(self.batch_size-10)*(np.maximum(0.0,1.0-np.exp(-1.0/30.0*(epoch-30.0))))
        entropy_function = self.batch_size-(self.batch_size-5)*(np.maximum(0.0,1.0-np.exp(-1.0/30.0*(epoch-30.0))))
        self.model.k_mse.load(int(np.round(mse_function)), sess)
        self.model.k_entropy.load(int(np.round(entropy_function)), sess) 
开发者ID:uzh-rpg,项目名称:rpg_public_dronet,代码行数:21,代码来源:log_utils.py

示例11: __init__

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import get_session [as 别名]
def __init__(self, model_path='model_data/yolo.h5', anchors_path='model_data/yolo_anchors.txt', yolo3_dir=None):
        self.yolo3_dir = yolo3_dir
        self.model_path = model_path
        self.anchors_path = anchors_path
        self.classes_path = 'model_data/coco_classes.txt'
        self.score = 0.3
        self.iou = 0.45
        self.class_names = self._get_class()
        self.anchors = self._get_anchors()
        self.sess = K.get_session()
        self.model_image_size = (416, 416)  # fixed size or (None, None), hw
        self.session = None
        self.final_model = None

        # Generate colors for drawing bounding boxes.
        hsv_tuples = [(x / len(self.class_names), 1., 1.)
                      for x in range(len(self.class_names))]
        self.colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples))
        self.colors = list(
            map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)),
                self.colors))
        np.random.seed(10101)  # Fixed seed for consistent colors across runs.
        np.random.shuffle(self.colors)  # Shuffle colors to decorrelate adjacent classes.
        np.random.seed(None)  # Reset seed to default.
        K.set_learning_phase(0) 
开发者ID:onnx,项目名称:keras-onnx,代码行数:27,代码来源:yolov3.py

示例12: predict_tfrecord

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import get_session [as 别名]
def predict_tfrecord(self, x_batch):
    if self.uses_learning_phase and not isinstance(K.learning_phase(), int):
      ins = [0.]
    else:
      ins = []
    self._make_tfrecord_predict_function()

    try:
      sess = K.get_session()
      coord = tf.train.Coordinator()
      threads = tf.train.start_queue_runners(sess=sess, coord=coord)

      outputs = self.predict_function(ins)

    finally:
      # TODO: If you close the queue, you can't open it again..
      # if stop_queue_runners:
      #   coord.request_stop()
      #   coord.join(threads)
      pass

    if len(outputs) == 1:
      return outputs[0]
    return outputs 
开发者ID:tae-jun,项目名称:sample-cnn,代码行数:26,代码来源:tfrecord_model.py

示例13: as_keras_metric

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import get_session [as 别名]
def as_keras_metric(method):
    import functools
    from keras import backend as K
    import tensorflow as tf
    @functools.wraps(method)
    def wrapper(self, args, **kwargs):
        """ Wrapper for turning tensorflow metrics into keras metrics """
        value, update_op = method(self, args, **kwargs)
        K.get_session().run(tf.local_variables_initializer())
        with tf.control_dependencies([update_op]):
            value = tf.identity(value)
        return value
    return wrapper 
开发者ID:manideep2510,项目名称:eye-in-the-sky,代码行数:15,代码来源:main_unet.py

示例14: __init__

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import get_session [as 别名]
def __init__(self, **kwargs):
        self.__dict__.update(self._defaults) # set up default values
        self.__dict__.update(kwargs) # and update with user overrides
        self.class_names = self._get_class()
        self.anchors = self._get_anchors()
        self.sess = K.get_session()
        self.boxes, self.scores, self.classes = self.generate() 
开发者ID:bing0037,项目名称:keras-yolo3,代码行数:9,代码来源:yolo.py

示例15: loss

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import get_session [as 别名]
def loss(X):
    X = X.reshape((1, FLAGS.IMAGE_ROWS, FLAGS.IMAGE_COLS, FLAGS.NUM_CHANNELS))
    confidence = K.get_session().run([prediction], feed_dict={x: X, K.learning_phase(): 0})[0]
    # confidence[:,curr_target] = 1e-4
    max_conf_i = np.argmax(confidence, 1)
    max_conf = np.max(confidence, 1)[0]
    if max_conf_i == curr_target:
        return max_conf
    elif max_conf_i != curr_target:
        return -1.0 * max_conf 
开发者ID:sunblaze-ucb,项目名称:blackbox-attacks,代码行数:12,代码来源:particle_swarm_attack.py


注:本文中的keras.backend.get_session方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。