当前位置: 首页>>代码示例>>Python>>正文


Python backend.epsilon方法代码示例

本文整理汇总了Python中keras.backend.epsilon方法的典型用法代码示例。如果您正苦于以下问题:Python backend.epsilon方法的具体用法?Python backend.epsilon怎么用?Python backend.epsilon使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在keras.backend的用法示例。


在下文中一共展示了backend.epsilon方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: call

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import epsilon [as 别名]
def call(self, x, mask=None):
        # computes a probability distribution over the timesteps
        # uses 'max trick' for numerical stability
        # reshape is done to avoid issue with Tensorflow
        # and 1-dimensional weights
        logits = K.dot(x, self.W)
        x_shape = K.shape(x)
        logits = K.reshape(logits, (x_shape[0], x_shape[1]))
        ai = K.exp(logits - K.max(logits, axis=-1, keepdims=True))

        # masked timesteps have zero weight
        if mask is not None:
            mask = K.cast(mask, K.floatx())
            ai = ai * mask
        att_weights = ai / (K.sum(ai, axis=1, keepdims=True) + K.epsilon())
        weighted_input = x * K.expand_dims(att_weights)
        result = K.sum(weighted_input, axis=1)
        if self.return_attention:
            return [result, att_weights]
        return result 
开发者ID:minerva-ml,项目名称:steppy-toolkit,代码行数:22,代码来源:contrib.py

示例2: get_config

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import epsilon [as 别名]
def get_config(self):
        config = {
            'learning_rate': float(K_eval(self.learning_rate)),
            'beta_1': float(K_eval(self.beta_1)),
            'beta_2': float(K_eval(self.beta_2)),
            'decay': float(K_eval(self.decay)),
            'batch_size': int(self.batch_size),
            'total_iterations': int(self.total_iterations),
            'weight_decays': self.weight_decays,
            'lr_multipliers': self.lr_multipliers,
            'use_cosine_annealing': self.use_cosine_annealing,
            't_cur': int(K_eval(self.t_cur)),
            'eta_t': float(K_eval(self.eta_t)),
            'eta_min': float(K_eval(self.eta_min)),
            'eta_max': float(K_eval(self.eta_max)),
            'init_verbose': self.init_verbose,
            'epsilon': self.epsilon,
            'amsgrad': self.amsgrad
        }
        base_config = super(AdamW, self).get_config()
        return dict(list(base_config.items()) + list(config.items())) 
开发者ID:OverLordGoldDragon,项目名称:keras-adamw,代码行数:23,代码来源:optimizers.py

示例3: get_config

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import epsilon [as 别名]
def get_config(self):
        config = {
            'lr': float(K.get_value(self.lr)),
            'beta_1': float(K.get_value(self.beta_1)),
            'beta_2': float(K.get_value(self.beta_2)),
            'decay': float(K.get_value(self.decay)),
            'batch_size': int(self.batch_size),
            'total_iterations': int(self.total_iterations),
            'weight_decays': self.weight_decays,
            'lr_multipliers': self.lr_multipliers,
            'use_cosine_annealing': self.use_cosine_annealing,
            't_cur': int(K.get_value(self.t_cur)),
            'eta_t': float(K.eval(self.eta_t)),
            'eta_min': float(K.get_value(self.eta_min)),
            'eta_max': float(K.get_value(self.eta_max)),
            'init_verbose': self.init_verbose,
            'epsilon': self.epsilon,
            'amsgrad': self.amsgrad
        }
        base_config = super(AdamW, self).get_config()
        return dict(list(base_config.items()) + list(config.items())) 
开发者ID:OverLordGoldDragon,项目名称:keras-adamw,代码行数:23,代码来源:optimizers_225.py

示例4: call

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import epsilon [as 别名]
def call(self, x, mask=None):
        uit = dot_product(x, self.W)

        if self.bias:
            uit += self.b

        uit = K.tanh(uit)
        ait = dot_product(uit, self.u)

        a = K.exp(ait)

        # apply mask after the exp. will be re-normalized next
        if mask is not None:
            # Cast the mask to floatX to avoid float64 upcasting in theano
            a *= K.cast(mask, K.floatx())

        # in some cases especially in the early stages of training the sum may be almost zero
        # and this results in NaN's. A workaround is to add a very small positive number ε to the sum.
        # a /= K.cast(K.sum(a, axis=1, keepdims=True), K.floatx())
        a /= K.cast(K.sum(a, axis=1, keepdims=True) + K.epsilon(), K.floatx())

        a = K.expand_dims(a)
        weighted_input = x * a
        return K.sum(weighted_input, axis=1) 
开发者ID:Hsankesara,项目名称:DeepResearch,代码行数:26,代码来源:attention_with_context.py

示例5: deprocess_image

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import epsilon [as 别名]
def deprocess_image(x):
    # normalize tensor: center on 0., ensure std is 0.1
    x -= x.mean()
    x /= (x.std() + K.epsilon())
    x *= 0.1

    # clip to [0, 1]
    x += 0.5
    x = np.clip(x, 0, 1)

    # convert to RGB array
    x *= 255
    if K.image_data_format() == 'channels_first':
        x = x.transpose((1, 2, 0))
    x = np.clip(x, 0, 255).astype('uint8')
    return x 
开发者ID:xyj77,项目名称:MCF-3D-CNN,代码行数:18,代码来源:conv_featuremaps_visualization.py

示例6: smoothing

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import epsilon [as 别名]
def smoothing(im, mode = None):
    # utility function to smooth an image
    if mode is None:
        return im
    elif mode == 'L2':
        # L2 norm
        return im / (np.sqrt(np.mean(np.square(im))) + K.epsilon())
    elif mode == 'GaussianBlur':
        # Gaussian Blurring with width of 3
        return filters.gaussian_filter(im,1/8)
    elif mode == 'Decay':
        # Decay regularization
        decay = 0.98
        return decay * im
    elif mode == 'Clip_weak':
        # Clip weak pixel regularization
        percentile = 1
        threshold = np.percentile(np.abs(im),percentile)
        im[np.where(np.abs(im) < threshold)] = 0
        return im
    else:
        # print error message
        print('Unknown smoothing parameter. No smoothing implemented.')
        return im 
开发者ID:crild,项目名称:facies_net,代码行数:26,代码来源:feature_vis.py

示例7: __init__

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import epsilon [as 别名]
def __init__(self, lr=0.001, beta_1=0.9, beta_2=0.999,
                 epsilon=None, decay=0., amsgrad=False, accum_iters=1, **kwargs):
        if accum_iters < 1:
            raise ValueError('accum_iters must be >= 1')
        super(AdamAccumulate, self).__init__(**kwargs)
        with K.name_scope(self.__class__.__name__):
            self.iterations = K.variable(0, dtype='int64', name='iterations')
            self.lr = K.variable(lr, name='lr')
            self.beta_1 = K.variable(beta_1, name='beta_1')
            self.beta_2 = K.variable(beta_2, name='beta_2')
            self.decay = K.variable(decay, name='decay')
        if epsilon is None:
            epsilon = K.epsilon()
        self.epsilon = epsilon
        self.initial_decay = decay
        self.amsgrad = amsgrad
        self.accum_iters = K.variable(accum_iters, K.dtype(self.iterations))
        self.accum_iters_float = K.cast(self.accum_iters, K.floatx()) 
开发者ID:emilwallner,项目名称:Coloring-greyscale-images,代码行数:20,代码来源:AdamAccumulate.py

示例8: call

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import epsilon [as 别名]
def call(self, x, mask=None):
        eij = dot_product(x, self.W)

        if self.bias:
            eij += self.b

        eij = K.tanh(eij)

        a = K.exp(eij)

        if mask is not None:
            a *= K.cast(mask, K.floatx())

        a /= K.cast(K.sum(a, axis=1, keepdims=True) + K.epsilon(), K.floatx())

        weighted_input = x * K.expand_dims(a)

        result = K.sum(weighted_input, axis=1)

        if self.return_attention:
            return [result, a]
        return result 
开发者ID:jiujiezz,项目名称:deephlapan,代码行数:24,代码来源:attention.py

示例9: get_updates

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import epsilon [as 别名]
def get_updates(self, loss, params):
        grads = self.get_gradients(loss, params)
        self.updates = [K.update_add(self.iterations, 1)]

        t = K.cast(self.iterations, K.floatx()) + 1
        lr_t = self.learning_rate * (K.sqrt(1. - K.pow(self.beta_2, t)) / (1. - K.pow(self.beta_1, t)))

        ms = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params]
        vs = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params]
        self.weights = [self.iterations] + ms + vs

        for p, g, m, v in zip(params, grads, ms, vs):
            m_t = (self.beta_1 * m) + (1. - self.beta_1) * g
            v_t = (self.beta_2 * v) + (1. - self.beta_2) * K.square(g)
            p_t = lr_t * m_t / (K.sqrt(v_t) + self.epsilon)
            self.updates.append(K.update(m, m_t))
            self.updates.append(K.update(v, v_t))
            self.updates.append(K.update_sub(p, p_t))
        return self.updates 
开发者ID:CyberZHG,项目名称:keras-lookahead,代码行数:21,代码来源:optimizers.py

示例10: call

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import epsilon [as 别名]
def call(self, x, mask=None):
        # size of x :[batch_size, sel_len, attention_dim]
        # size of u :[batch_size, attention_dim]
        # uit = tanh(xW+b)
        uit = K.tanh(K.bias_add(K.dot(x, self.W), self.b))
        ait = K.dot(uit, self.u)
        ait = K.squeeze(ait, -1)

        ait = K.exp(ait)

        if mask is not None:
            # Cast the mask to floatX to avoid float64 upcasting in theano
            ait *= K.cast(mask, K.floatx())
        ait /= K.cast(K.sum(ait, axis=1, keepdims=True) + K.epsilon(), K.floatx())
        ait = K.expand_dims(ait)
        weighted_input = x * ait
        output = K.sum(weighted_input, axis=1)

        return output 
开发者ID:shibing624,项目名称:text-classifier,代码行数:21,代码来源:attention_layer.py

示例11: crossentropy_reed_wrap

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import epsilon [as 别名]
def crossentropy_reed_wrap(_beta):
    def crossentropy_reed_core(y_true, y_pred):
        """
        This loss function is proposed in:
        Reed et al. "Training Deep Neural Networks on Noisy Labels with Bootstrapping", 2014

        :param y_true:
        :param y_pred:
        :return:
        """

        # hyper param
        print(_beta)
        y_pred = K.clip(y_pred, K.epsilon(), 1)

        # (1) dynamically update the targets based on the current state of the model: bootstrapped target tensor
        # use predicted class proba directly to generate regression targets
        y_true_update = _beta * y_true + (1 - _beta) * y_pred

        # (2) compute loss as always
        _loss = -K.sum(y_true_update * K.log(y_pred), axis=-1)

        return _loss
    return crossentropy_reed_core 
开发者ID:edufonseca,项目名称:icassp19,代码行数:26,代码来源:losses.py

示例12: __init__

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import epsilon [as 别名]
def __init__(self, action_space, batch_size=32, screen=(84, 84), swap_freq=200):
        from keras.optimizers import RMSprop		
        # -----
        self.screen = screen
        self.input_depth = 1
        self.past_range = 3
        self.observation_shape = (self.input_depth * self.past_range,) + self.screen
        self.batch_size = batch_size

        _, _, self.train_net, adventage = build_network(self.observation_shape, action_space.n)

        self.train_net.compile(optimizer=RMSprop(epsilon=0.1, rho=0.99),
                               loss=[value_loss(), policy_loss(adventage, args.beta)])

        self.pol_loss = deque(maxlen=25)
        self.val_loss = deque(maxlen=25)
        self.values = deque(maxlen=25)
        self.entropy = deque(maxlen=25)
        self.swap_freq = swap_freq
        self.swap_counter = self.swap_freq
        self.unroll = np.arange(self.batch_size)
        self.targets = np.zeros((self.batch_size, action_space.n))
        self.counter = 0 
开发者ID:Grzego,项目名称:async-rl,代码行数:25,代码来源:train.py

示例13: __init__

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import epsilon [as 别名]
def __init__(self, lr=0.001, final_lr=0.1, beta_1=0.9, beta_2=0.999, gamma=1e-3,
                 epsilon=None, decay=0., amsbound=False, weight_decay=0.0, **kwargs):
        super(AdaBound, self).__init__(**kwargs)

        if not 0. <= gamma <= 1.:
            raise ValueError("Invalid `gamma` parameter. Must lie in [0, 1] range.")

        with K.name_scope(self.__class__.__name__):
            self.iterations = K.variable(0, dtype='int64', name='iterations')
            self.lr = K.variable(lr, name='lr')
            self.beta_1 = K.variable(beta_1, name='beta_1')
            self.beta_2 = K.variable(beta_2, name='beta_2')
            self.decay = K.variable(decay, name='decay')

        self.final_lr = final_lr
        self.gamma = gamma

        if epsilon is None:
            epsilon = K.epsilon()
        self.epsilon = epsilon
        self.initial_decay = decay
        self.amsbound = amsbound

        self.weight_decay = float(weight_decay)
        self.base_lr = float(lr) 
开发者ID:titu1994,项目名称:keras-adabound,代码行数:27,代码来源:adabound.py

示例14: call

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import epsilon [as 别名]
def call(self, inputs, mask=None, **kwargs):
        if isinstance(inputs, list):
            query, key, value = inputs
        else:
            query = key = value = inputs
        if isinstance(mask, list):
            mask = mask[1]
        feature_dim = K.shape(query)[-1]
        e = K.batch_dot(query, key, axes=2) / K.sqrt(K.cast(feature_dim, dtype=K.floatx()))
        e = K.exp(e - K.max(e, axis=-1, keepdims=True))
        if self.history_only:
            query_len, key_len = K.shape(query)[1], K.shape(key)[1]
            indices = K.tile(K.expand_dims(K.arange(key_len), axis=0), [query_len, 1])
            upper = K.expand_dims(K.arange(key_len), axis=-1)
            e *= K.expand_dims(K.cast(indices <= upper, K.floatx()), axis=0)
        if mask is not None:
            e *= K.cast(K.expand_dims(mask, axis=-2), K.floatx())
        a = e / (K.sum(e, axis=-1, keepdims=True) + K.epsilon())
        v = K.batch_dot(a, value)
        if self.return_attention:
            return [v, a]
        return v 
开发者ID:yongzhuo,项目名称:Keras-TextClassification,代码行数:24,代码来源:scale_dot_product_attention.py

示例15: bootstrapped_crossentropy

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import epsilon [as 别名]
def bootstrapped_crossentropy(y_true, y_pred, bootstrap_type='hard', alpha=0.95):
    target_tensor = y_true
    prediction_tensor = y_pred
    _epsilon = _to_tensor(K.epsilon(), prediction_tensor.dtype.base_dtype)
    prediction_tensor = K.tf.clip_by_value(prediction_tensor, _epsilon, 1 - _epsilon)
    prediction_tensor = K.tf.log(prediction_tensor / (1 - prediction_tensor))

    if bootstrap_type == 'soft':
        bootstrap_target_tensor = alpha * target_tensor + (1.0 - alpha) * K.tf.sigmoid(prediction_tensor)
    else:
        bootstrap_target_tensor = alpha * target_tensor + (1.0 - alpha) * K.tf.cast(
            K.tf.sigmoid(prediction_tensor) > 0.5, K.tf.float32)
    return K.mean(K.tf.nn.sigmoid_cross_entropy_with_logits(
        labels=bootstrap_target_tensor, logits=prediction_tensor)) 
开发者ID:killthekitten,项目名称:kaggle-carvana-2017,代码行数:16,代码来源:losses.py


注:本文中的keras.backend.epsilon方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。