当前位置: 首页>>代码示例>>Python>>正文


Python backend.backend方法代码示例

本文整理汇总了Python中keras.backend.backend方法的典型用法代码示例。如果您正苦于以下问题:Python backend.backend方法的具体用法?Python backend.backend怎么用?Python backend.backend使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在keras.backend的用法示例。


在下文中一共展示了backend.backend方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: classifier

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import backend [as 别名]
def classifier(base_layers, input_rois, num_rois, nb_classes = 21, trainable=False):

    # compile times on theano tend to be very high, so we use smaller ROI pooling regions to workaround

    if K.backend() == 'tensorflow':
        pooling_regions = 14
        input_shape = (num_rois,14,14,1024)
    elif K.backend() == 'theano':
        pooling_regions = 7
        input_shape = (num_rois,1024,7,7)

    out_roi_pool = RoiPoolingConv(pooling_regions, num_rois)([base_layers, input_rois])
    out = classifier_layers(out_roi_pool, input_shape=input_shape, trainable=True)

    out = TimeDistributed(Flatten())(out)

    out_class = TimeDistributed(Dense(nb_classes, activation='softmax', kernel_initializer='zero'), name='dense_class_{}'.format(nb_classes))(out)
    # note: no regression target for bg class
    out_regr = TimeDistributed(Dense(4 * (nb_classes-1), activation='linear', kernel_initializer='zero'), name='dense_regress_{}'.format(nb_classes))(out)
    return [out_class, out_regr] 
开发者ID:akshaylamba,项目名称:FasterRCNN_KERAS,代码行数:22,代码来源:resnet.py

示例2: _loadTFGraph

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import backend [as 别名]
def _loadTFGraph(self, sess, graph):
        """
        Loads the Keras model into memory, then uses the passed-in session to load the
        model's inference-related ops into the passed-in Tensorflow graph.

        :return: A tuple (graph, input_name, output_name) where graph is the TF graph
        corresponding to the Keras model's inference subgraph, input_name is the name of the
        Keras model's input tensor, and output_name is the name of the Keras model's output tensor.
        """
        keras_backend = K.backend()
        assert keras_backend == "tensorflow", \
            "Only tensorflow-backed Keras models are supported, tried to load Keras model " \
            "with backend %s." % (keras_backend)
        with graph.as_default():
            K.set_learning_phase(0)  # Inference phase
            model = load_model(self.getModelFile())
            out_op_name = tfx.op_name(model.output, graph)
            stripped_graph = tfx.strip_and_freeze_until([out_op_name], graph, sess,
                                                        return_graph=True)
            return stripped_graph, model.input.name, model.output.name 
开发者ID:databricks,项目名称:spark-deep-learning,代码行数:22,代码来源:shared_params.py

示例3: test_save_load_all

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import backend [as 别名]
def test_save_load_all(self):
        for backend in self.list_backends():
            try:
                set_keras_backend(backend)
            except ModuleNotFoundError:
                continue
            K.set_learning_phase(0)  # test
            for use_attn_mask in [True, False]:
                model = self.create_small_model(use_attn_mask)
                path = '/tmp/{}.model'.format(uuid.uuid4())
                try:
                    model.save(path)
                    new_model = keras.models.load_model(path, custom_objects={'MultiHeadAttention': MultiHeadAttention,
                                                                              'LayerNormalization': LayerNormalization,
                                                                              'Gelu': Gelu})
                    TestTransformer.compare_two_models(model, new_model)
                except Exception as e:
                    raise e
                finally:
                    if os.path.exists(path):
                        os.remove(path) 
开发者ID:yyht,项目名称:BERT,代码行数:23,代码来源:test_transformer.py

示例4: test_save_load_weights

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import backend [as 别名]
def test_save_load_weights(self):
        for backend in self.list_backends():
            try:
                set_keras_backend(backend)
            except ModuleNotFoundError:
                continue
            K.set_learning_phase(0)  # test
            for use_attn_mask in [True, False]:
                model = self.create_small_model(use_attn_mask)
                path = '/tmp/{}.model'.format(uuid.uuid4())
                try:
                    model.save_weights(path)
                    model.load_weights(path)
                except Exception as e:
                    raise e
                finally:
                    if os.path.exists(path):
                        os.remove(path) 
开发者ID:yyht,项目名称:BERT,代码行数:20,代码来源:test_transformer.py

示例5: classifier

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import backend [as 别名]
def classifier(base_layers, input_rois, num_rois, nb_classes = 21, trainable=False):

    # compile times on theano tend to be very high, so we use smaller ROI pooling regions to workaround

    if K.backend() == 'tensorflow':
        pooling_regions = 7
        input_shape = (num_rois,7,7,512)
    elif K.backend() == 'theano':
        pooling_regions = 7
        input_shape = (num_rois,512,7,7)

    out_roi_pool = RoiPoolingConv(pooling_regions, num_rois)([base_layers, input_rois])

    out = TimeDistributed(Flatten(name='flatten'))(out_roi_pool)
    out = TimeDistributed(Dense(4096, activation='relu', name='fc1'))(out)
    out = TimeDistributed(Dropout(0.5))(out)
    out = TimeDistributed(Dense(4096, activation='relu', name='fc2'))(out)
    out = TimeDistributed(Dropout(0.5))(out)

    out_class = TimeDistributed(Dense(nb_classes, activation='softmax', kernel_initializer='zero'), name='dense_class_{}'.format(nb_classes))(out)
    # note: no regression target for bg class
    out_regr = TimeDistributed(Dense(4 * (nb_classes-1), activation='linear', kernel_initializer='zero'), name='dense_regress_{}'.format(nb_classes))(out)

    return [out_class, out_regr] 
开发者ID:kbardool,项目名称:keras-frcnn,代码行数:26,代码来源:vgg.py

示例6: swish

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import backend [as 别名]
def swish(x,
          name="swish"):
    """
    Swish activation function from 'Searching for Activation Functions,' https://arxiv.org/abs/1710.05941.

    Parameters:
    ----------
    x : keras.backend tensor/variable/symbol
        Input tensor/variable/symbol.
    name : str, default 'swish'
        Block name.

    Returns
    -------
    keras.backend tensor/variable/symbol
        Resulted tensor/variable/symbol.
    """
    w = nn.Activation("sigmoid", name=name + "/sigmoid")(x)
    x = nn.multiply([x, w], name=name + "/mul")
    return x 
开发者ID:osmr,项目名称:imgclsmob,代码行数:22,代码来源:common.py

示例7: clip_norm

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import backend [as 别名]
def clip_norm(g, c, n):
    if c > 0:
        if K.backend() == 'tensorflow':
            import tensorflow as tf
            import copy
            condition = n >= c
            then_expression = tf.scalar_mul(c / n, g)
            else_expression = g

            if hasattr(then_expression, 'get_shape'):
                g_shape = copy.copy(then_expression.get_shape())
            elif hasattr(then_expression, 'dense_shape'):
                g_shape = copy.copy(then_expression.dense_shape)
            if condition.dtype != tf.bool:
                condition = tf.cast(condition, 'bool')
            g = K.tensorflow_backend.control_flow_ops.cond(
                condition, lambda: then_expression, lambda: else_expression)
            if hasattr(then_expression, 'get_shape'):
                g.set_shape(g_shape)
            elif hasattr(then_expression, 'dense_shape'):
                g._dense_shape = g_shape
        else:
            g = K.switch(n >= c, g * c / n, g)
    return g 
开发者ID:danieljl,项目名称:keras-image-captioning,代码行数:26,代码来源:keras_patches.py

示例8: classifier

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import backend [as 别名]
def classifier(base_layers, input_rois, num_rois, nb_classes=21, trainable=False):

    # compile times on theano tend to be very high, so we use smaller ROI pooling regions to workaround

    if K.backend() == 'tensorflow':
        pooling_regions = 14
        # Changed the input shape to 1088 from 1024 because of nn_base's output being 1088. Not sure if this is correct
        input_shape = (num_rois, 14, 14, 1088)
    elif K.backend() == 'theano':
        pooling_regions = 7
        input_shape = (num_rois, 1024, 7, 7)

    out_roi_pool = RoiPoolingConv(pooling_regions, num_rois)([base_layers, input_rois])
    out = classifier_layers(out_roi_pool, input_shape=input_shape, trainable=True)

    out = TimeDistributed(Flatten())(out)

    out_class = TimeDistributed(Dense(nb_classes, activation='softmax', kernel_initializer='zero'), name='dense_class_{}'.format(nb_classes))(out)
    # note: no regression target for bg class
    out_regr = TimeDistributed(Dense(4 * (nb_classes-1), activation='linear', kernel_initializer='zero'), name='dense_regress_{}'.format(nb_classes))(out)
    return [out_class, out_regr] 
开发者ID:you359,项目名称:Keras-FasterRCNN,代码行数:23,代码来源:inception_resnet_v2.py

示例9: classifier

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import backend [as 别名]
def classifier(base_layers, input_rois, num_rois, nb_classes = 21, trainable=False):

    # compile times on theano tend to be very high, so we use smaller ROI pooling regions to workaround

    if K.backend() == 'tensorflow':
        pooling_regions = 7
        input_shape = (num_rois, 7, 7, 512)
    elif K.backend() == 'theano':
        pooling_regions = 7
        input_shape = (num_rois, 512, 7, 7)

    out_roi_pool = RoiPoolingConv(pooling_regions, num_rois)([base_layers, input_rois])

    out = TimeDistributed(Flatten(name='flatten'))(out_roi_pool)
    out = TimeDistributed(Dense(4096, activation='relu', name='fc1'))(out)
    out = TimeDistributed(Dense(4096, activation='relu', name='fc2'))(out)

    out_class = TimeDistributed(Dense(nb_classes, activation='softmax', kernel_initializer='zero'), name='dense_class_{}'.format(nb_classes))(out)
    # note: no regression target for bg class
    out_regr = TimeDistributed(Dense(4 * (nb_classes-1), activation='linear', kernel_initializer='zero'), name='dense_regress_{}'.format(nb_classes))(out)

    return [out_class, out_regr] 
开发者ID:you359,项目名称:Keras-FasterRCNN,代码行数:24,代码来源:vgg.py

示例10: classifier

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import backend [as 别名]
def classifier(base_layers, input_rois, num_rois, nb_classes=21, trainable=False):

    # compile times on theano tend to be very high, so we use smaller ROI pooling regions to workaround

    if K.backend() == 'tensorflow':
        pooling_regions = 14
        input_shape = (num_rois, 14, 14, 1024)
    elif K.backend() == 'theano':
        pooling_regions = 7
        input_shape = (num_rois, 1024, 7, 7)

    out_roi_pool = RoiPoolingConv(pooling_regions, num_rois)([base_layers, input_rois])
    out = classifier_layers(out_roi_pool, input_shape=input_shape, trainable=True)

    out = TimeDistributed(Flatten())(out)

    out_class = TimeDistributed(Dense(nb_classes, activation='softmax', kernel_initializer='zero'), name='dense_class_{}'.format(nb_classes))(out)
    # note: no regression target for bg class
    out_regr = TimeDistributed(Dense(4 * (nb_classes-1), activation='linear', kernel_initializer='zero'), name='dense_regress_{}'.format(nb_classes))(out)
    return [out_class, out_regr] 
开发者ID:you359,项目名称:Keras-FasterRCNN,代码行数:22,代码来源:resnet.py

示例11: _handle_broken_model

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import backend [as 别名]
def _handle_broken_model(self, model, error):
        del model

        n = self.genome_handler.n_classes
        loss = log_loss(np.concatenate(([1], np.zeros(n - 1))), np.ones(n) / n)
        accuracy = 1 / n
        gc.collect()

        if K.backend() == 'tensorflow':
            K.clear_session()
            tf.reset_default_graph()

        print('An error occurred and the model could not train:')
        print(error)
        print(('Model assigned poor score. Please ensure that your model'
               'constraints live within your computational resources.'))
        return loss, accuracy 
开发者ID:joeddav,项目名称:devol,代码行数:19,代码来源:devol.py

示例12: contain_tf_gpu_mem_usage

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import backend [as 别名]
def contain_tf_gpu_mem_usage():
    """
    By default TensorFlow may try to reserve all available GPU memory
    making it impossible to train multiple networks at once.
    This function will disable such behaviour in TensorFlow.
    """
    from keras import backend
    if backend.backend() != 'tensorflow':
        return
    try:
        # noinspection PyPackageRequirements
        import tensorflow as tf
    except ImportError:
        pass
    else:
        from keras.backend.tensorflow_backend import set_session
        config = tf.ConfigProto()
        config.gpu_options.allow_growth = True  # dynamically grow the memory
        sess = tf.Session(config=config)
        set_session(sess) 
开发者ID:kpot,项目名称:keras-transformer,代码行数:22,代码来源:utils.py

示例13: classifier

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import backend [as 别名]
def classifier(base_layers, input_rois, num_rois, nb_classes = 21, trainable=True):

    # compile times on theano tend to be very high, so we use smaller ROI pooling regions to workaround

    if K.backend() == 'tensorflow':
        pooling_regions = 14
        input_shape = (num_rois,14,14,1024)
    elif K.backend() == 'theano':
        raise ValueError("Theano backend not supported")

    out_roi_pool = RoiPoolingConv(pooling_regions, num_rois,trainable=trainable)([base_layers, input_rois])
    out = classifier_layers(out_roi_pool, input_shape=input_shape, trainable=True)

    out = TimeDistributed(Flatten())(out)

    out_class = TimeDistributed(Dense(nb_classes, activation='softmax', kernel_initializer='zero',trainable=trainable), name='dense_class_{}'.format(nb_classes),trainable=trainable)(out)
    # note: no regression target for bg class
    out_regr = TimeDistributed(Dense(4 * (nb_classes-1), activation='linear', kernel_initializer='zero',trainable=trainable), name='dense_regress_{}'.format(nb_classes),trainable=trainable)(out)
    return [out_class, out_regr] 
开发者ID:Abhijit-2592,项目名称:Keras_object_detection,代码行数:21,代码来源:nn_arch_resnet50.py

示例14: __init__

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import backend [as 别名]
def __init__(self, log_dir='./logs',
                 histogram_freq=0,
                 batch_size=32,
                 write_graph=True,
                 write_grads=False,
                 write_images=False,
                 embeddings_freq=0,
                 embeddings_layer_names=None,
                 embeddings_metadata=None):
        super(TensorBoard, self).__init__()
        if K.backend() != 'tensorflow':
            raise RuntimeError('TensorBoard callback only works '
                               'with the TensorFlow backend.')
        self.log_dir = log_dir
        self.histogram_freq = histogram_freq
        self.merged = None
        self.write_graph = write_graph
        self.write_grads = write_grads
        self.write_images = write_images
        self.embeddings_freq = embeddings_freq
        self.embeddings_layer_names = embeddings_layer_names
        self.embeddings_metadata = embeddings_metadata or {}
        self.batch_size = batch_size 
开发者ID:UKPLab,项目名称:coling2018_fake-news-challenge,代码行数:25,代码来源:Keras_utils.py

示例15: setup

# 需要导入模块: from keras import backend [as 别名]
# 或者: from keras.backend import backend [as 别名]
def setup(env):
        stderr = sys.stderr
        sys.stderr = open(os.devnull, "w")
        # pylint: disable=W0612
        try:
            import keras
        except Exception as e:
            raise e
        finally:
            sys.stderr = stderr

        from keras import backend as K
        if K.backend() == 'tensorflow':
            TensorFlowLibrary.setup(env)
            K.set_session(TensorFlowLibrary.create_session(env)) 
开发者ID:mme,项目名称:vergeml,代码行数:17,代码来源:libraries.py


注:本文中的keras.backend.backend方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。